• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Possibility of localization methods for inverse problems of time dependent problems

Research Project

Project/Area Number 19K03565
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionHiroshima University

Principal Investigator

Kawashita Mishio  広島大学, 先進理工系科学研究科(理), 教授 (80214633)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords時間依存型逆問題 / 局所化 / 空洞推定 / 介在物推定 / 接合境界問題 / 漸近解による方法
Outline of Research at the Start

本研究は囲い込み法による時間依存微分方程式に対する逆問題の解析において「局所化」という視点を導入することを目的とする。それを通じて、これまで申請者らが研究してきたレゾルベントの漸近挙動の解析を利用した逆問題への取り組みにおける適用範囲の拡張を目指す。これまでは基本解全体を用いるなど、必要以上の情報を利用しており、それが適用範囲を限る原因となっていた。その部分の改善を、次の問題の考察を通して試みる。
接合境界面が平坦であるということのみを先見情報とし、平坦な接合境界面の上側から波を発射、観測することにより接合境界面の位置や下側の伝播速度についての情報を得る。

Outline of Final Research Achievements

Scattering problems in the wave equation in a region with obstacles (cavities) are considered. The direct setup of giving an incident wave and observing the reflected wave is formulated by the enclosure method, and the inverse problem detecting the cavities is considered.The problems are to analyse the asymptotic behavior of the indicator function, and there are already many results. Prior research has been limited to cases where the asymptotic behavior of the indicator functions has the same sign, such as Dirichlet boundaries only, Neumann-type boundaries only, etc. The lack of a "localization" perspective is also a problem. This study allows for the treatment of mixed cavities where the signs of the indicator functions would be different if they stood alone. Furthermore, by using asymptotic solutions in the construction of reflected waves, we are able to perform "localization" for reflected waves.

Academic Significance and Societal Importance of the Research Achievements

本研究課題は散乱逆問題の一種であり、例えば、エコーやソナーなど外部から波を入れて内部の状況を推定する状況を数学的に定式化したものに相当する。これらの道具は既に各分野で使用されているが、数学的に見た場合、観測データから何が導けるか、誤差評価はどのようにしているのか等については未知に近い状況と思われる。本研究はこのような理論的な考察に関連がある。また、数学という分野の観点から見た場合、既存の方法では扱えなかった場合の扱い方を開発し、さらに、この問題とはほとんど関連がないと思われる研究との関係を発見するなど、新たな知見を得たのも意義があることと考えている。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (10 results)

All 2024 2023 2022 2021 2019

All Journal Article (3 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (7 results) (of which Int'l Joint Research: 4 results,  Invited: 6 results)

  • [Journal Article] Enclosure method for inverse problems with the Dirichlet and Neumann combined case2023

    • Author(s)
      Mishio Kawashita and Wakako Kawashita
    • Journal Title

      the proceedings of IMI workshop, "Practical inverse problems and their prospects". in Book series "Mathematics for Industry"

      Volume: 37

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asymptotics of some function corresponding to refraction phenomena arising in inverse problems of wave equation of flat two layer medium2021

    • Author(s)
      Mishio Kawashita and Wakako Kawashita
    • Journal Title

      RIMS Koukyuroku

      Volume: 2195 Pages: 42-63

    • NAID

      120007165864

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena2019

    • Author(s)
      Ikehata, M., Kawashita, M. and Kawashita, W.
    • Journal Title

      Inverse Problems and Imaging

      Volume: 13 Issue: 5 Pages: 959-981

    • DOI

      10.3934/ipi.2019043

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Inverse problems for media with multiple types of cavities2024

    • Author(s)
      川下美潮
    • Organizer
      第41回 九州における偏微分方程式研究集会
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 複数種の穴を持つ媒質についての波動方程式による逆問題における指示関数の漸近挙動について2023

    • Author(s)
      川下美潮・川下和日子
    • Organizer
      日本数学会2023年度秋期総合分科会一般講演
    • Related Report
      2023 Annual Research Report
  • [Presentation] Dirichlet 境界と Neumann 境界が混在する媒質における波動方程式の逆問題に現れる指示関数の漸近挙動について2023

    • Author(s)
      川下美潮・川下和日子
    • Organizer
      Takamatsu Workshop on Partial Differential Equations
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Inverse problems for wave equations with the Dirichlet and Neumann cavities2022

    • Author(s)
      Mishio Kawashita
    • Organizer
      Theory and practice in inverse problems
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inverse problems for wave equations with the Dirichlet and Neumann cavities2022

    • Author(s)
      Mishio Kawashita
    • Organizer
      Practical inverse problems and their prospects
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Finding obstacles in the below side of two layered media by the enclosure method2021

    • Author(s)
      川下美潮
    • Organizer
      第12回 名古屋微分方程式研究集会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Asymptotics of some function corresponding to refraction phenomena arising in inverse problems for wave equations in at two-layered medium2019

    • Author(s)
      川下美潮
    • Organizer
      スペクトル・散乱理論とその周辺(RIMS 共同研究(公開型))
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi