• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The Stokes phenomenon on linear or nonlinear, differential and differential equations

Research Project

Project/Area Number 19K03566
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionThe University of Tokushima

Principal Investigator

OHYAMA Yousuke  徳島大学, 大学院社会産業理工学研究部(理工学域), 教授 (10221839)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsストークス現象 / 接続問題 / 超幾何方程式 / パンルヴェ方程式 / q-パンルヴェ方程式 / セグレ曲面 / q-ストークス構造 / 漸近展開 / q-超幾何函数 / 楕円函数 / q-パンルヴェ 方程式 / q-差分方程式
Outline of Research at the Start

微分方程式や差分方程式を形式的に解くと級数で解が表示されるが,多くの場合はその級数が発散してしまう。この発散級数に対して,ある領域に限定すれば収束する函数として意味付けができるので,差分方程式の場合に意味付けすることが主目的である。方程式が線型の場合はある程度この意味付けができるが,非線型になると難しくなるので,特にPainleve方程式という解の性質が素直な方程式に対して発散級数の意味付けを行う。

Outline of Final Research Achievements

The problem of determining the relation between solutions of differential or difference equations at different points is called a connection problem. Moreover, solutions in the neighborhood of singular points are expressed by divergent power series, and the phenomenon where the true solution differs in different regions is called the Stokes phenomenon. We solve connection problems and the Stokes phenomena in the case of higher order q-hypergeometric difference equations and some q-Painleve equations. In particular, we discover that the space of connection for the q-Painleve VI equation, known as the character manifold, becomes the Segre surfaces, i.e., fourth-order Del Pezzo surfaces.

Academic Significance and Societal Importance of the Research Achievements

微分方程式・差分方程式の接続問題は数理科学の基本的な問題の一つです。またストークス現象も19世紀より知られており、収束しない発散級数を意味付けすることは新しい数学の源泉の一つです。q-差分方程式の場合のストークス現象の研究によって場の量子論など現代的な数理科学への応用が見込まれます。また、q-パンルヴェ方程式の大域解析のためにもq-ストークス問題を解くことが必要になりますが、q-超幾何方程式のストークス現象を用いて、q-パンルヴェ方程式の指標多様体の構造が明確になり、さらなら発展が期待できます。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (19 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (2 results) (of which Open Access: 1 results) Presentation (14 results) (of which Int'l Joint Research: 5 results,  Invited: 6 results)

  • [Int'l Joint Research] トゥールーズ大学(フランス)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] リール大学・Laboratoire Paul-Painleve/トゥールーズ大学・Institue Mathematique(フランス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] リール大学・Laboratoire Paul-Painleve/トゥールーズ大学・Institue Mathematique(フランス)

    • Related Report
      2019 Research-status Report
  • [Journal Article] 楕円関数とPainleve性について2021

    • Author(s)
      大山陽介
    • Journal Title

      津田塾大学数学・計算機科学研究所報

      Volume: 43 Pages: 77-104

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] 可積分系と保型形2021

    • Author(s)
      大山 陽介
    • Journal Title

      数理科学

      Volume: 692 Pages: 63-69

    • Related Report
      2020 Research-status Report
  • [Presentation] Global geometry of q-Painleve equations2023

    • Author(s)
      Yousuke Ohyama
    • Organizer
      The 3rd Shot of The 13th MSJ-SI :Differential Geometry and Integrable Systems
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Boundary behavior of q-Painlev e equation of type A_4^{(1)}2023

    • Author(s)
      大山 陽介
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Global analysis on the Painleve equations2022

    • Author(s)
      Yousuke Ohyama
    • Organizer
      Painleve Equations: From Classical to Modern Analysis
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Connection problems on Painleve equations2021

    • Author(s)
      OHYAMA, Yousuke
    • Organizer
      Exact WKB Analysis, Microlocal Analysis, Painleve Equations and Related Topics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 楕円関数とPainleve性について2021

    • Author(s)
      大山 陽介
    • Organizer
      第31回数学史シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] q-Stokes phenomenon of basic hypergeometric equations and the Painleve equations2021

    • Author(s)
      OHYAMA, Yousuke
    • Organizer
      Analytic theory of differential and difference equations dedicated to the memory of Andrey Bolibrukh
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] q-connection problems on hypergeometric and Painleve equations2021

    • Author(s)
      OHYAMA, Yousuke
    • Organizer
      Web-seminar on Painleve Equations and related topics
    • Related Report
      2020 Research-status Report
  • [Presentation] The space of connection data of q-linear equations and q-Painleve equations2020

    • Author(s)
      OHYAMA, Yousuke
    • Organizer
      Kobe Seminar on Integrable Systems
    • Related Report
      2020 Research-status Report
  • [Presentation] Asymptotic Analysis of the third q-Painleve equation2020

    • Author(s)
      大山 陽介
    • Organizer
      2020年日本数学会度秋季総合分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] Connection formula of basic hypergeometric equations with one regular singular point2020

    • Author(s)
      大山 陽介
    • Organizer
      超幾何方程式研究会 2020
    • Related Report
      2019 Research-status Report
  • [Presentation] 高階q-超幾何方程式のq-Stokes現象--beyond Thomae 150--2019

    • Author(s)
      大山 陽介
    • Organizer
      第3回古典解析・徳島研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] 高階超幾何方程式の q-Stokes 現象2019

    • Author(s)
      大山 陽介
    • Organizer
      函数方程式論サマーセミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] q-Stokes phenomenon of basic hypergeometric equations2019

    • Author(s)
      Ohyama, Yousuke
    • Organizer
      Differential Galois theory in Strasbourg
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] q-Stokes problems on basic hypergeometric equations2019

    • Author(s)
      大山 陽介
    • Organizer
      2019日本数学会秋季総合分科会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi