• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on free boundary problems arising in mathematical ecology and related nonlinear diffusion equations

Research Project

Project/Area Number 19K03573
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionWaseda University

Principal Investigator

Yamada Yoshio  早稲田大学, 理工学術院, 名誉教授 (20111825)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords反応拡散方程式 / 非線形拡散方程式 / 自由境界問題 / 解の漸近挙動 / 数理生態学 / 比較定理 / spreading / 正値双安定項 / 比較原理 / 漸近挙動 / 解の形状 / 双安定反応項 / 非線形拡散
Outline of Research at the Start

数理生態学においては生物の個体数や生息領域の変化を知ることが重要なテーマである。生息領域の境界は自由境界となり、個体数は反応拡散方程式により記述される。このとき自由境界の動きは Stefan 型の境界条件により決定される場合と非線形拡散方程式に内在する場合の2通りがある。前者の例として、競合する二つの生物種の「縄張り争い」をモデルとする反応拡散方程式に対する二相自由境界問題がある。後者の例として、森林の変遷をモデルとする退化型非線形拡散項を伴う非線形システムがある。本研究において、これらの問題に対して未知関数および自由境界が時間の経過とともに変化する様子を理論的に明らかにしたい。

Outline of Final Research Achievements

We have studied a free boundary problem for nonlinear diffusion equations. When the problem models the invasion of a new species in mathematical ecology, the population density of the species and its habitat are two unknown functions and the boundary of the habitat is called a free boundary. The population density satisfies a reaction-diffusion equation and the dynamics of the free boundary is governed by a Stefan condition. In this research, we have considered a diffusion equation with a positive bistable reaction term, which possesses two positive stable equilibria, and investigated dynamical behaviors of solutions for the free boundary problem in a higher-dimensional space. As important results, we have proved that two types of spreading phenomena occur correspondingly to two positive equilibria and we also have obtained precise estimates for a spreading speed of the free boundary and an asymptotic profile of the density in each case.

Academic Significance and Societal Importance of the Research Achievements

本研究で取り扱った自由境界問題は,数理生態学における外来種の侵入現象をモデルとしている.ここでは2次元以上の空間における反応拡散方程式の解と自由境界の性質を詳しく調べた.主な研究成果は解挙動の分類,および自由境界や密度関数に関する時間無限大における詳細な漸近評価である.これらの結果は数学的に重要であるのみならず,外来種の侵入現象に適用すれば,外来種の侵入が成功するか否か、また侵入領域の拡大速度はどうか、などの問題について貴重な知見が得られる.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (11 results)

All 2023 2022 2020 2019 Other

All Journal Article (7 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 7 results) Presentation (3 results) (of which Invited: 2 results) Remarks (1 results)

  • [Journal Article] A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions Ⅲ : General case2023

    • Author(s)
      Yuki Kaneko, Hiroshi Matsuzawa and Yoshio Yamada
    • Journal Title

      Discrete and Continuous Dynamical Systems - Series S

      Volume: ー Issue: 2 Pages: 742-761

    • DOI

      10.3934/dcdss.2023089

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior2022

    • Author(s)
      Y. Kaneko, H. Matsuzawa and Y. Yamada
    • Journal Title

      Discrete and Continuous Dynamical Systems

      Volume: 42 Issue: 6 Pages: 2719-2745

    • DOI

      10.3934/dcds.2021209

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity2020

    • Author(s)
      Maho Endo, Yuki Kaneko, Yoshio Yamada
    • Journal Title

      Discrete and Continuous Dynamical Systems, Series A

      Volume: 40 Issue: 6 Pages: 3375-3394

    • DOI

      10.3934/dcds.2020033

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asymptotic properties of a free boundary problem for a reaction-diffusion equation with multi-stable nonlinearity2020

    • Author(s)
      Yoshio Yamada
    • Journal Title

      Rendiconti dell'Istituto di Matematica dell'Universita di Trieste

      Volume: 52 Pages: 65-89

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Global existence of weak solutions to forest kinematic model with nonlinear degenerate diffusion2020

    • Author(s)
      Mitsuki Kobayashi and Yoshio Yamada
    • Journal Title

      Advances in Mathematical Sciences and Applications

      Volume: 29 Pages: 187-209

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asymptotic profiles of solutions and propagating terrace for a free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity2020

    • Author(s)
      Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada
    • Journal Title

      SIAM Journal on Mathematical Analysis

      Volume: 52 Issue: 1 Pages: 65-103

    • DOI

      10.1137/18m1209970

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Dissipative reaction-diffusion systems with quadratic growth2019

    • Author(s)
      Michel Pierre, Takashi Suzuki and Yoshio Yamada
    • Journal Title

      Indiana University Mathematics Journal

      Volume: 68 Issue: 1 Pages: 291-322

    • DOI

      10.1512/iumj.2019.68.7447

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Positive bistable 項を伴う反応拡散方程式の自由境界問題に対する球対称解の漸近挙動2022

    • Author(s)
      兼子裕大,松澤寛,山田義雄
    • Organizer
      日本数学会秋季総合分科会,北海道大学
    • Related Report
      2022 Annual Research Report
  • [Presentation] 反応拡散方程式の自由境界問題とテラス型伝播解2022

    • Author(s)
      山田義雄
    • Organizer
      徳島偏微分方程式小研究集会,徳島大学
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 数理生態学に現れる Stefan 型自由境界問題について2020

    • Author(s)
      山田義雄
    • Organizer
      東北大学解析セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] 早稲田大学 山田義雄研究室

    • URL

      http://www.f.waseda.jp/yamada/

    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi