• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Nonlinear partial differential equations on sub-Riemannian manifolds based on viscosity solution theory

Research Project

Project/Area Number 19K03574
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionOkinawa Institute of Science and Technology Graduate University (2022-2023)
Fukuoka University (2019-2021)

Principal Investigator

LIU Qing  沖縄科学技術大学院大学, 幾何学的偏微分方程式ユニット, 准教授 (70753771)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords非線形偏微分方程式 / サブリーマン多様体 / 粘性解 / 凸関数 / 凸集合 / 準凸関数 / ハイゼンベルク群 / カルノー群 / 半凹関数 / 関数不等式 / ハイゼンベルグ群 / 曲率流 / 凸包 / ハミルトン・ヤコビ方程式 / 無限大ラプラシアン / 距離空間上の固有値問題 / 主固有値 / アイコナール方程式 / 測地距離空間 / 時間分数階偏微分方程式 / サブリーマン / 凸性 / 動的境界値問題 / 粘性解理論
Outline of Research at the Start

サブリーマン多様体上の微分方程式論は生物学や機械工学などの分野へ応用できることが広く認識されている.現代科学の最先端の研究へ直接的に貢献するために数学的な基礎理論を発展させることが本研究のモチベーションである.具体的には,最適輸送,視覚機能と幾何学的制御の研究に応用される非線形偏微分方程式の解の正則性と凸保存性等の性質を考察し,これまでユークリッド空間で構築された粘性解理論をサブリーマン多様体へ拡張することを目標とする.

Outline of Final Research Achievements

In recent years, the importance of mathematical analysis has been recognized not only in Euclidean spaces but also on sub-Riemannian manifolds with more complex geometric structures. In this research project, we studied partial differential equations in sub-Riemannian manifolds arising from various fields including biology, optimal control theory and image processing, focusing on the analysis of their geometric properties. We extended the well-established viscosity solution theory for fully nonlinear equations in Euclidean spaces to more general geometric settings. Additionally, we investigated new notions of convex sets, convex functions and convex envelopes that align with the space geometric properties, leading to a deeper understanding from the perspective of partial differential equations.

Academic Significance and Societal Importance of the Research Achievements

サブリーマン多様体における偏微分方程式の数学解析は,数学のみならず,生物学や工学などの問題にも様々な応用がある重要なテーマです.我々の研究は、複雑な幾何学的構造を持つ空間を理解するための枠組みを提供し,そのような空間における偏微分方程式及びその幾何学的性質の研究において基本的な数学的ツールを確立しました.現実世界の応用に現れる様々な数学モデルを研究するための数学的基盤を構築しました.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (40 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (15 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 13 results,  Open Access: 3 results) Presentation (20 results) (of which Int'l Joint Research: 6 results,  Invited: 20 results) Funded Workshop (2 results)

  • [Int'l Joint Research] フィレンツェ大学(イタリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] カーディフ大学(英国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of Cincinnati(米国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Quasiconvexity preserving property for first order nonlocal evolution equations2024

    • Author(s)
      Kagaya Takashi, Qing Liu, Hiroyoshi Mitake
    • Journal Title

      RIMS Kokyuroku

      Volume: 2277

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Horizontally quasiconvex envelope in the Heisenberg group2023

    • Author(s)
      Kijowski Antoni、Liu Qing、Zhou Xiaodan
    • Journal Title

      Revista Matematica Iberoamericana

      Volume: in press Issue: 1 Pages: 57-92

    • DOI

      10.4171/rmi/1417

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Quasiconvexity preserving property for fully nonlinear nonlocal parabolic equations2022

    • Author(s)
      Takashi Kagaya, Qing Liu, Hiroyoshi Mitake
    • Journal Title

      Nonlinear Differential Equations and Applications NoDEA

      Volume: 30 Issue: 1 Pages: 1-28

    • DOI

      10.1007/s00030-022-00818-8

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Horizontal convex envelope in the Heisenberg group and applications to sub-elliptic equations2021

    • Author(s)
      Liu Qing、Zhou Xiaodan
    • Journal Title

      ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE

      Volume: XXII Pages: 30-30

    • DOI

      10.2422/2036-2145.201907_001

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A game-theoretic approach to dynamic boundary problems for level-set curvature flow equations and applications2021

    • Author(s)
      Nao Hamamuki, Qing Liu
    • Journal Title

      SN Partial Differential Equations and Applications

      Volume: 2 Issue: 2 Pages: 1-27

    • DOI

      10.1007/s42985-021-00076-w

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Singular Neumann boundary problems for a class of fully nonlinear parabolic equations in one dimension2021

    • Author(s)
      Takashi Kagaya, Qing Liu
    • Journal Title

      SIAM Journal on Mathematical Analysis

      Volume: 53 Issue: 4 Pages: 4350-4385

    • DOI

      10.1137/20m1371646

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Semiconvexity of viscosity solutions to fully nonlinear evolution equations via discrete games2021

    • Author(s)
      Qing Liu
    • Journal Title

      Geometric Properties for Parabolic and Elliptic PDE's, Springer INdAM Series

      Volume: 47 Pages: 205-231

    • DOI

      10.1007/978-3-030-73363-6_10

    • ISBN
      9783030733629, 9783030733636
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Equivalence of solutions of eikonal equation in metric spaces2021

    • Author(s)
      Qing Liu, Nageswari Shanmugalingam, Zhou Xiaodan
    • Journal Title

      Journal of Differential Equations

      Volume: 272 Pages: 979-1014

    • DOI

      10.1016/j.jde.2020.10.018

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Discrete schemes for time-fractional fully nonlinear evolution equations and their convergence2020

    • Author(s)
      Y. Giga, Q. Liu, H. Mitake
    • Journal Title

      Asymptot. Anal.

      Volume: accepted Issue: 1-2 Pages: 1-12

    • DOI

      10.3233/asy-191583

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Large exponent behavior for power-type nonlinear evolution equations and applications2020

    • Author(s)
      Qing Liu
    • Journal Title

      Journal of Evolution Equations

      Volume: 20 Issue: 3 Pages: 777-810

    • DOI

      10.1007/s00028-019-00539-z

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On an obstacle problem arising in large exponent asymptotics for one dimensional fully nonlinear diffusions of power type2020

    • Author(s)
      Qing Liu
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: 85 Pages: 281-289

    • DOI

      10.2969/aspm/08510281

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A deterministic game interpretation for fully nonlinear parabolic equations with dynamic boundary conditions2020

    • Author(s)
      Nao Hamamuki, Qing Liu
    • Journal Title

      ESAIM Control Optim. Calc. Var.

      Volume: 26 Pages: 1-42

    • DOI

      10.1051/cocv/2019076

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] The vanishing exponent limit for motion by a power of mean curvature2020

    • Author(s)
      Qing Liu
    • Journal Title

      Interfaces Free Bound.

      Volume: 22 Issue: 1 Pages: 51-84

    • DOI

      10.4171/ifb/432

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Parabolic Minkowski convolutions and concavity properties of viscosity solutions to fully nonlinear equations2020

    • Author(s)
      Kazuhiro Ishige, Qing Liu, Paolo Salani
    • Journal Title

      J. Math. Pures Appl.

      Volume: - Pages: 342-370

    • DOI

      10.1016/j.matpur.2019.12.010

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Large exponent asymptotics for one dimensional fully nonlinear diffusion of power type2020

    • Author(s)
      Qing Liu
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2146 Pages: 9-20

    • Related Report
      2019 Research-status Report
  • [Presentation] A PDE-based approach to Borell-Brascamp-Lieb inequality2024

    • Author(s)
      柳 青
    • Organizer
      深江における非線形偏微分方程式研究集会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Principal eigenvalue problem for infinity Laplacian in metric spaces2023

    • Author(s)
      Qing Liu
    • Organizer
      Variational Methods for Nonlinear PDEs, Cardiff University
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] First order fully nonlinear nonlocal evolution equations2023

    • Author(s)
      Qing Liu
    • Organizer
      Minisymposium Nonlinear PDEs and Related Diffusion Phenomena, 10th International Congress on Industrial and Applied Mathematics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A representation formula for viscosity solutions of nonlocal Hamilton-Jacobi equations and applications2023

    • Author(s)
      Qing Liu
    • Organizer
      Probabilistic and game theoretical interpretation of PDEs, Autonomous University of Madrid
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Horizontal quasiconvex functions in the Heisenberg group2023

    • Author(s)
      柳青
    • Organizer
      広島数理解析セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Quasiconvexity preserving property for fully nonlinear nonlocal parabolic equations2022

    • Author(s)
      柳青
    • Organizer
      早稲田大学応用解析研究会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Quasiconvexity preserving property for fully nonlinear nonlocal parabolic equations2022

    • Author(s)
      柳青
    • Organizer
      研究集会「発展方程式における系統的形状解析及び漸近解析」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Quasiconvexity preserving property for fully nonlinear nonlocal parabolic equations2022

    • Author(s)
      Qing Liu
    • Organizer
      Asia-Pacific Analysis and PDE Seminar
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Quasiconvexity preserving property for fully nonlinear nonlocal parabolic equations2022

    • Author(s)
      Qing Liu
    • Organizer
      RIMS研究集会「発展方程式論の革新:異分野との融合がもたらす理論の深化」
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Principal eigenvalue problem for infinity Laplacian in metric spaces2021

    • Author(s)
      Qing Liu
    • Organizer
      Hong Kong University of Science and Technology PDE seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Principal eigenvalue problem for infinity Laplacian in metric spaces2021

    • Author(s)
      柳青
    • Organizer
      神戸大学解析セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Eikonal equations on metric spaces2020

    • Author(s)
      柳 青
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Equivalence of solutions of eikonal equation on metric spaces2020

    • Author(s)
      柳 青
    • Organizer
      第45回偏微分方程式論札幌シンポジウム
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Parabolic Minkowski convolutions and concavity properties of viscosity solutions to fully nonlinear equations2020

    • Author(s)
      Qing Liu
    • Organizer
      The 37th Kyushu Symposium on Partial Differential Equations
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On the horizontal convex envelope in the Heisenberg group2019

    • Author(s)
      柳 青
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A deterministic game interpretation for fully nonlinear parabolic equations with dynamic boundary conditions2019

    • Author(s)
      柳 青
    • Organizer
      金沢解析セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Large exponent behavior for power curvature flow and applications2019

    • Author(s)
      Qing Liu
    • Organizer
      PDE seminar, New York University Shanghai
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A deterministic game interpretation for fully nonlinear parabolic equations with dynamic boundary conditions2019

    • Author(s)
      Qing Liu
    • Organizer
      The Sixth Italian-Japanese Workshop on Geometric Properties for Parabolic and Elliptic PDE's
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A deterministic game interpretation for fully nonlinear parabolic equations with dynamic boundary conditions2019

    • Author(s)
      Qing Liu
    • Organizer
      Nonlinear Averaging and PDEs
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Parabolic Minkowski convolutions and concavity properties of viscosity solutions to fully nonlinear equations2019

    • Author(s)
      柳 青
    • Organizer
      南大阪応用数学セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Funded Workshop] OIST Conference Geometric PDEs and Applications2023

    • Related Report
      2022 Research-status Report
  • [Funded Workshop] Viscosity solution approach to asymptotic problems in front propagation, dynamical system and related topics2019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi