• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Solvability and solutions' analysis of nonlinear elliptic equations from the viewpoint of eigenvalue problems

Research Project

Project/Area Number 19K03591
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionTokyo University of Science

Principal Investigator

Tanaka Mieko  東京理科大学, 理学部第一部数学科, 准教授 (00459728)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords非線形固有値問題 / 楕円型微分作用素 / 解の存在と非存在 / 解の符号 / p-Laplacian / 解の正値性 / 符号変化する重み関数 / 固有値問題 / 楕円型作用素 / 楕円型偏微分方程式
Outline of Research at the Start

本研究では、非線形楕円型作用素の固有値問題の視点から関連したパラメータを含む非線形楕円型微分方程式の解が存在するかどうか、また解の符号や性質などの解析を行う。

第1段階として、(p,q)-Laplace 方程式の固有値問題に関連した方程式の解の多重性や一意性、もしくは非存在であるのか、をパラメータによってどのように変化するか研究する。
第2段階では、得られた解の符号や特徴づけを行っていく。
その後、固有値問題を一般化したものや他の楕円型作用素への研究、特に解の存在・非存在について研究を行っていく。

Outline of Final Research Achievements

(1)By generalizing the Picone inequality used in the p-Laplace equation and using a good test function, the Picone inequality can be used to prove the non-existence of positive solutions to the (p,q)Laplace equation. (2)Although two curves related to the (p,q)-Laplacian eigenvalue problem were constructed in the previous work, it’s proven that the two curves do not coincide by showing the existence of positive solutions that are different from the least energy solution. By this method, we succeeded in finding three positive solutions in a special case. (3) In the p-Laplace eigenvalue equation with a p-sublinear perturbation term, we showed the existence of two positive solutions that seem to be the bifurcation from the least energy solution even when a parameter is over the threshold.

Academic Significance and Societal Importance of the Research Achievements

Picone不等式を一般化して上手いテスト関数を用いる事により適用出来る方程式の範囲を広げる事に成功した事は、色々な形への一般化Picone不等式の導出と適用方法の改良などへの促進となり今後の発展が期待される。正値解の多重存在の証明方法を構築や既存の方法の改良を行った。この手法が他の方程式などにも適用されたり、改良されて使われるようになる事が期待され、意義があると考える。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (11 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Int'l Joint Research] Ufa Federal Research Centre(ロシア連邦)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] West Bohemia(チェコ)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of West Bohemia(チェコ)

    • Related Report
      2019 Research-status Report
  • [Journal Article] On subhomogeneous indefinite p-Laplace equations in the supercritical spectral interval2023

    • Author(s)
      Vladimir Bobkov and Mieko Tanaka
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 62 Issue: 1

    • DOI

      10.1007/s00526-022-02322-4

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Multiplicity of positive solutions for (p,q)-Laplace equations with two parameters2022

    • Author(s)
      Vladimir Bobkov and Mieko Tanaka
    • Journal Title

      Communications in contemporary mathematica

      Volume: 24 Issue: 03

    • DOI

      10.1142/s0219199721500085

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Generalized Picone inequalities and their applications to (p,q)-Laplace equations2020

    • Author(s)
      Vladimir Bobkov and Mieko Tanaka
    • Journal Title

      Open Mathematics

      Volume: 2020 Issue: 1 Pages: 1030-1044

    • DOI

      10.1515/math-2020-0065

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Maximum principle and Anti-Maximum principle type results for the p-Laplacian with indefinite weights2022

    • Author(s)
      Mieko Tanaka
    • Organizer
      大阪公立大学における微分方程式セミナー
    • Related Report
      2022 Annual Research Report
  • [Presentation] The least energy solutions for subhomogeneous indefinite p-Laplace equations2022

    • Author(s)
      田中 視英子
    • Organizer
      Internal Workshop on Nonlinear Elliptic Equations and Its Applications
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Remarks on ground states for p-Laplace equations with indefinite weight2021

    • Author(s)
      田中 視英子
    • Organizer
      オンラインによる微分方程式セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] 符号変化する重み関数付き p-劣線形項を持つ p-ラプラス方程式の最小エネルギー解について2021

    • Author(s)
      田中 視英子
    • Organizer
      応用解析研究会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Some remarks on positive solutions for $(p,q)$-Laplace equations with two parameters2019

    • Author(s)
      田中 視英子
    • Organizer
      南大阪応用数学セミナー
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi