• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis of a mathematical model for the nest construction of social insects

Research Project

Project/Area Number 19K03594
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKwansei Gakuin University

Principal Investigator

Osaki Koichi  関西学院大学, 理学部, 教授 (40353320)

Co-Investigator(Kenkyū-buntansha) 鳴海 孝之  山口大学, 大学院創成科学研究科, 准教授 (50599644)
陰山 真矢  岡山理科大学, 理学部, 講師 (80824060)
Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
KeywordsDeneubourg系 / Keller-Segel系 / 走化性 / 走性 / 時間大域解の存在 / パターン形成 / 反応拡散系 / ミツバチ / 走化性方程式 / 走化性・増殖系 / indirect走化性系 / 非線形現象 / indeirect走化性系 / 非線形放物型方程式 / 社会性昆虫
Outline of Research at the Start

社会性昆虫であるシロアリならびにミツバチの造巣過程を数理モデル化した2つの数理モデル(Deneubourg系およびSkarka-Deneubourg-Belic系)を研究します.その解析には,これまで研究代表者らが発展・整備させてきた手法が有効であると考えています.本研究では,これらのモデルに新規に現れる問題:解の時間大域的存在性,アトラクターの存在性,解のダイナミクスについて研究を推し進めます.それによって,社会性昆虫の造巣現象のメカニズム解明に寄与するとともに,新規に開発して用いる数理解析の手法を整理・整備して,非線形解析学分野の発展にも貢献することを目指します.

Outline of Final Research Achievements

We studied two mathematical models that describe the nesting processes of social insects, specifically termites and honeybees. These models are classified as three-component reaction-diffusion-advection systems. The advection in these models is particularly due to the taxis behavior of the insects, and the methods developed and refined by the principal investigator for two-component systems are effective for the mathematical analysis of such taxis systems. In this study, we identified new mathematical difficulties that arise in the three-component insect taxis systems. We advanced research on issues that include some of these difficulties, such as the global-in-time existence of solutions, the existence of finite-dimensional global attractors, the dynamics of solutions, and especially mode analysis in pattern formation of solutions.

Academic Significance and Societal Importance of the Research Achievements

本研究では社会性昆虫の営巣に関する数理モデルの基本的性質を明らかにしました.数理モデルの性質が明らかとなれば,その結果を現象の理解に役立てることができます.数理モデルを研究することの利点には,現象を予測し,さらに制御できる可能性が広がることなどがあります.本研究で扱った数理モデルは社会性昆虫の営巣に関する走性モデルですが,走性は昆虫のみならず白血球やがん細胞などにも存在しており,本研究を含む基礎研究が様々な自然現象の予測と制御へとつながる可能性があります.

Report

(4 results)
  • 2023 Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (16 results)

All 2022 2021 2020 2019

All Journal Article (6 results) (of which Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (10 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] An agent-based modeling and simulation for the first stage of honeycomb construction2022

    • Author(s)
      T. Narumi, T. Akiyama, M. Kageyama, K. Uemichi, H. Honda, and K. Osaki
    • Journal Title

      Journal of Physics: Conference Series

      Volume: 2207 Issue: 1 Pages: 012013-012013

    • DOI

      10.1088/1742-6596/2207/1/012013

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 円柱状の巣箱におけるミツバチの営巣2021

    • Author(s)
      秋山拓海,寺井大貴,陰山真矢,鳴海孝之,大﨑浩一
    • Journal Title

      兵庫生物

      Volume: 16 Pages: 1-4

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Global Attractor for a Two-Dimensional Chemotaxis System with Linear Degradation and Indirect Signal Production2020

    • Author(s)
      Etsushi Nakaguchi, Kanako Noda, Koichi Osaki and Kenta Uemichi
    • Journal Title

      Jpn J. Ind. Appl. Math.

      Volume: 37(1) Issue: 1 Pages: 49-80

    • DOI

      10.1007/s13160-019-00376-0

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] BIFURCATIONS WITH MULTI-DIMENSIONAL KERNEL IN A CHEMOTAXIS-GROWTH SYSTEM2019

    • Author(s)
      T. Aoki and K. Osaki
    • Journal Title

      Scientiae Mathematicae Japonicae

      Volume: 82 Issue: 2 Pages: 155-169

    • DOI

      10.32219/isms.82.2_155

    • NAID

      130007759808

    • ISSN
      1346-0447
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] ミツバチの営巣初期過程に対するエージェントベースモデル2019

    • Author(s)
      鳴海孝之・陰山真矢・上道賢太・本多久夫・大崎浩一
    • Journal Title

      昆虫と自然

      Volume: 54(9) Pages: 35-37

    • Related Report
      2019 Research-status Report
  • [Journal Article] Global attractor and Lyapunov function for one-dimensional Deneubourg chemotaxis system2019

    • Author(s)
      K. Noda and K. Osaki
    • Journal Title

      Hiroshima Math. J.

      Volume: Vol.49, No.2 Pages: 251-271

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] ミツバチ巣の異方的成長に関する数理モデルの改良と解析2022

    • Author(s)
      秋山拓海,大崎浩一
    • Organizer
      第7回数理生物学交流発表会
    • Related Report
      2021 Research-status Report
  • [Presentation] An Agent-Based Modeling and Simulation for the First Stage of Honeycomb Construction2021

    • Author(s)
      Takayuki Narumi, Maya Kageyama, Kenta Uemichi, Hisao Honda, and Koichi Osaki
    • Organizer
      XXXII IUPAP Conference on Computational Physics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 数理モデルを用いたミツバチ巣の異方性発生メカニズムの解析2021

    • Author(s)
      秋山拓海,大崎浩一
    • Organizer
      西日本非線形科学研究会2021
    • Related Report
      2021 Research-status Report
  • [Presentation] 走化性を有する生物と化学物質分布との相互作用を取り入れたシミュレーションの構築2021

    • Author(s)
      別府寛太, 鳴海孝之
    • Organizer
      2021年度応用物理・物理系学会 中国四国支部合同学術講演会
    • Related Report
      2021 Research-status Report
  • [Presentation] デイジーワールドモデルにおける温室効果と植生パターン形成2021

    • Author(s)
      Maya Kageyama
    • Organizer
      日本数学会社会連携協議会:異分野・異業種交流会
    • Related Report
      2021 Research-status Report
  • [Presentation] Vegetation pattern formation in Daisyworld model with the greenhouse effect2021

    • Author(s)
      Maya Kageyama
    • Organizer
      RIMS International conference: Modeling and Mathematical Analysis of Dynamics of Patterns
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 数理モデルを用いたミツバチ巣の発生メカニズムの解析2020

    • Author(s)
      秋山拓海・大崎浩一
    • Organizer
      SCI-TECH Research Forum
    • Related Report
      2020 Research-status Report
  • [Presentation] Deneubourg走化性系の解析と数値シミュレーション2020

    • Author(s)
      島川雄太郎・大崎浩一
    • Organizer
      第12回サイエンスフェアin兵庫,ニチイ学館・甲南大学ポートアイランドセンター
    • Related Report
      2019 Research-status Report
  • [Presentation] An Agent-Based Model for Understanding Symmetric Alignment of Honeycomb2019

    • Author(s)
      Takayuki Narumi, Kenta Uemichi, Hisao Honda and Koichi Osaki
    • Organizer
      Symmetry: Art and Science -11th Congress and Exhibition, Kanazawa
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] ミツバチの営巣初期過程に見られる自己組織化2019

    • Author(s)
      鳴海孝之・上道賢太・本多久夫・大崎浩ー
    • Organizer
      第87回形の科学会シンポジウム「生物と医学にまつわる物理法則」,東京慈恵会医科大学(東京都調布市)
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi