• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Proof-theoretic investigations on wellfoundedness

Research Project

Project/Area Number 19K03599
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12030:Basic mathematics-related
Research InstitutionThe University of Tokyo

Principal Investigator

Arai Toshiyasu  東京大学, 大学院数理科学研究科, 教授 (40193049)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsproof theory / 証明論 / 順序数解析 / 整列性
Outline of Research at the Start

整列性というのは、再帰的定義の基本となる原理である。最も簡単なのが自然数の順序だがそれをより大きい順序へ拡張したのが整列順序である。
この整列順序の型が順序数と呼ばれる。順序数解析はこの順序数を通じて、公理系に潜む原理を摘出することをしている。今回の研究は、この順序数解析の道具である順序数そのものに焦点を当てて、それを公理系として捉えて、順序数によりこの公理系を分析する。

Outline of Final Research Achievements

The well ordering principle WOP(g) for a normal function g on ordinals states that whenever a well order X is given, g(X) is also a well order. Its proof-theoretic strength is known to depend on the normal functions g. Proofs of these facts were obtained by showing that WOP(g) is equivalent to a Comprehension Axiom, whose strength has been determined.
We show in general that the proof-theoretic ordinal of WOP(g) is equal to the least fixed point of the normal function g. The key in our proof lies in an extraction of an embedding from derivations of the well-foundedness, and of an extendability of embeddings through an indiscernibility of g-terms in g(X).

Academic Significance and Societal Importance of the Research Achievements

整列性原理WOP(g)は証明論において考察するのが極めて自然な原理である. その証明論的強さを正則関数gによらずに一様に与えた学術的意義は小さくない. さらにgの微分g'による整列性原理WOP(g')が「任意に大きいWOP(g)のオメガモデルの存在」と同等であるという事実も示したが, これも逆数学の文脈で意義のある結果である. それらの定理の証明に用いた事実は二つあった.一つは整礎性の証明から埋め込みを抽出すること, 二つ目にその埋め込みのg(X)におけるg-項の識別不可能性を用いた拡張にある. 前者はGentzen-Takeutiの結果から得られるが, 後者は全く新しい観点に基づいている.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (15 results)

All 2023 2022 2021 2020 2019 Other

All Journal Article (7 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 7 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Book (2 results) Remarks (3 results)

  • [Journal Article] Wellfoundedness proof with the maximal distinguished set'2023

    • Author(s)
      Toshiyasu Arai
    • Journal Title

      Archives for Mathematical Logic

      Volume: 62 Pages: 333-357

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Wellfoundedness proof with the maximal distinguished set.2022

    • Author(s)
      Toshiyasu Arai
    • Journal Title

      Archives for Mathematical Logic

      Volume: - Issue: 3-4 Pages: 333-357

    • DOI

      10.1007/s00153-022-00840-8

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] GOODSTEIN SEQUENCES BASED ON A PARAMETRIZED ACKERMANN?P?TER FUNCTION2021

    • Author(s)
      ARAI TOSHIYASU、WAINER STANLEY S.、WEIERMANN ANDREAS
    • Journal Title

      The Bulletin of Symbolic Logic

      Volume: 27 Issue: 2 Pages: 168-186

    • DOI

      10.1017/bsl.2021.30

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A simplified ordinal analysisi of first-order reflection2020

    • Author(s)
      Toshiyasu Arai
    • Journal Title

      Journal of Symbolic Logic

      Volume: 85 Pages: 1163-1185

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Predicatively unprovable termination of the Ackermannian Gioodstein process2020

    • Author(s)
      Toshiyasu Arai, David Fernandez-Duque, Stan Wainer, Andreas Weiermann
    • Journal Title

      Proceedings of American Mathematical Society

      Volume: 148 Pages: 3567-3582

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Proof-theoretic strengths of the well ordering principles2020

    • Author(s)
      Toshiyasu Arai
    • Journal Title

      Archive sfor Mathematical Logic

      Volume: 59 Pages: 257-275

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Predicatively unprovable termination of the Ackermannian Goodstein process2020

    • Author(s)
      Arai Toshiyasu、Fern?ndez-Duque David、Wainer Stanley、Weiermann Andreas
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: - Issue: 8 Pages: 1-1

    • DOI

      10.1090/proc/14813

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 順序数解析を考えている2021

    • Author(s)
      新井敏康
    • Organizer
      証明と計算の理論と応用
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Some results in proof theory2019

    • Author(s)
      Toshiyasu Arai
    • Organizer
      Logic Colloquium
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Mahlo classes for first-order reflections2019

    • Author(s)
      Toshiyasu Arai
    • Organizer
      Workshop on Proof Theory, Modal Logic and Reflection Principles
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] 数学基礎論 増補版2021

    • Author(s)
      新井 敏康
    • Total Pages
      610
    • Publisher
      東京大学
    • ISBN
      9784130629270
    • Related Report
      2021 Research-status Report 2020 Research-status Report
  • [Book] Ordinal Anakysis with an Introduction to Proof Theory2020

    • Author(s)
      Toshiyasu Arai
    • Total Pages
      313
    • Publisher
      Springer
    • ISBN
      9789811564581
    • Related Report
      2020 Research-status Report
  • [Remarks]

    • URL

      http://researchmap.jp/tosarai/

    • Related Report
      2023 Annual Research Report
  • [Remarks] researchmap

    • URL

      https://researchmap.jp/tosarai

    • Related Report
      2022 Research-status Report
  • [Remarks]

    • URL

      https://researchmap.jp/tosarai

    • Related Report
      2021 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi