• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematical fundamentals of generalized characteristic particle methods for flow problems

Research Project

Project/Area Number 19K03638
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionKyushu University

Principal Investigator

TAGAMI Daisuke  九州大学, マス・フォア・インダストリ研究所, 准教授 (40315122)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords特性曲線一般化粒子法 / 流れ問題 / Navier--Stokes方程式 / 誤差評価 / 特性曲線法 / 粒子法 / 創生解問題 / 一般化特性曲線粒子法 / 一般化粒子法 / 安定性 / 適切性
Outline of Research at the Start

粒子法は偏微分方程式に対する数値計算手法の一つであり, その特徴から近年, 津波のような移動境界問題に適用されている. しかし差分法や有限要素法などの数値計算手法と比較すると, 粒子法に対する数学的基盤は十分に整備されていない. 研究代表者は, 固定領域上における移流拡散方程式に対する特性曲線一般化粒子法を提案し, その誤差評価を得ている. 本研究課題ではこの成果を活用し, 偏微分方程式に対する粒子法の数学的基盤の整備における次の段階として, 固定領域上における非圧縮粘性流れ問題に対する粒子法の数学的基盤の整備, および提案する手法に基づくプログラム開発・計算機実装・精度検証を行う.

Outline of Final Research Achievements

We introduced a slightly incompressible Navier-Stokes equations, which are often used in the numerical calculation of particle methods for flow problems, and applied the characteristic generalized particle method into the equations. Through numerical experiments of manufuctured solution problems of incompressible Navier-Stokes equations by using the characteristic generalized particle method and applications to more physically practical problems, we numerically confirmed the stability and appropriateness of the characteristic generalized particle method. Moreover, we developed preliminary results necessary for error estimates of the characteristic generalized particle method for the slightly incompressible Navier-Stokes equations, and developped error estimates of the characteristic generalized particle method.

Academic Significance and Societal Importance of the Research Achievements

移動境界を持つ流れ問題に対する効率的な数値計算手法として, 粒子法は広く用いられているが, その数値解析学の視点から見た誤差評価の整備は, 差分法や有限要素法など他の数値計算手法と比較すると非常に遅れていた. 本研究で得られた成果より, 粒子法に対する数値解析学の視点から見た結果を用いることで, 数値計算手法に対する数学的正当化が進んだことには大きな意義がある. また, 粒子法を用いて様々な実際の問題の数値計算を行う際の得られる数値計算結果に対する信頼性が向上することとなり, ソフトウェア開発など様々な実社会への応用に貢献することができるため, その社会的意義も大きい.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (14 results)

All 2023 2022 2021 2020 2019

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (12 results) (of which Int'l Joint Research: 8 results)

  • [Journal Article] Numerical Analysis of the Viscoelastic Flow Problems by a Semi-Implicit Characteristic Generalized Particle Methods2023

    • Author(s)
      TAGAMI, Daisuke
    • Journal Title

      Proceedings of the 17th SPHERIC International Workshop (SPHERIC 2023)

      Volume: 978-1-3999-5885-1

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Numerical Stability of a Semi-Implicit Characteristic Time Integration of the Generalized Particle Method for Flow Problems2021

    • Author(s)
      TAGAMI, Daisuke
    • Journal Title

      Proceedings of the 15th SPHERIC International Workshop (SPHERIC 2021)

      Volume: NA

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Numerical Analysis of the Viscoelastic Flow Problems by a Semi-Implicit Characteristic Generalized Particle Methods2023

    • Author(s)
      TAGAMI, Daisuke
    • Organizer
      The 17th SPHERIC International Workshop (SPHERIC 2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 疎空間を離散 de Rham 系列を満たす多角形要素で近似した不完全 BDD 法2023

    • Author(s)
      田上 大助
    • Organizer
      第6回大規模電 磁界数値解析手法に関する研究シンポジウム
    • Related Report
      2022 Research-status Report
  • [Presentation] 離散 de Rham 系列を満たす多面体要素を用いた不完全 BDD 法の静磁場問題への適用2022

    • Author(s)
      田上 大助
    • Organizer
      第 27 回計算工学講演会
    • Related Report
      2022 Research-status Report
  • [Presentation] Numerical analysis of an incomplete balancing domain decomposition method based on polynomial finite element spaces2022

    • Author(s)
      TAGAMI, Daisuke
    • Organizer
      COMPUMAG2021
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 離散de Rham系列を満たす多角形要素を用いた電磁場問題の数値計算の基礎2022

    • Author(s)
      田上 大助
    • Organizer
      第5回大規模電磁界数値解析手法に関する研究シンポジウム (LSCEM2022)
    • Related Report
      2021 Research-status Report
  • [Presentation] Numerical Analysis of an Incomplete Balancing Domain Decomposition Method based on Polynomial Finite Element Spaces2022

    • Author(s)
      TAGAMI, Daisuke
    • Organizer
      The 23rd Conference on the Computation of Electromagnetic Fields (COMPUMAG 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 疎空間にある多角形要素を用いた反復型領域分割法の前処理2021

    • Author(s)
      田上 大助
    • Organizer
      第26回計算工学講演会
    • Related Report
      2021 Research-status Report
  • [Presentation] Numerical Stability of a Semi-Implicit Characteristic Time Integration of the Generalized Particle Method for Flow Problems2021

    • Author(s)
      TAGAMI, Daisuke
    • Organizer
      SPHERIC 2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Numerical Stability of a Characteristic Generalized Particle Method for Flow Problems2020

    • Author(s)
      TAGAMI, Daisuke
    • Organizer
      SPHERIC 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] An incomplete balancing domain decomposition method for magnetostatic problems2019

    • Author(s)
      TAGAMI Daisuke
    • Organizer
      APCOM 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] An incomplete balancing domain decomposition method for magnetostatic problems2019

    • Author(s)
      TAGAMI Daisuke
    • Organizer
      ICCM 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Numerical analysis of the Navier--Stokes equations by a semi-implicit characteristic generalized particle methods2019

    • Author(s)
      TAGAMI Daisuke
    • Organizer
      SPHERIC 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi