Project/Area Number |
19K03640
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 暗号・認証等 / アルゴリズム / 暗号 / 代数学 |
Outline of Research at the Start |
本研究の目的は、ポスト量子暗号の代表的なものの一つである多変数多項式暗号が基づく連立代数方程式の求解問題の計算困難性を評価し、さらにこの問題に基づく新しいポスト量子暗号の提案をすることである。本研究は2019年度から2022年度までを想定し、前半の2年間は多変数連立代数方程式の解法の一つであるグレブナー基底計算アルゴリズムについて、その実用的な高速化であるF4アルゴリズムの改良と高速実装に取り組み、後半の2年間は既存の方式で用いられている落とし戸つき一方向性関数の解析を行い、有名なMI暗号やHFE暗号等とは異なる仕掛けに基づく多変数多項式暗号の提案を目指す。
|
Outline of Final Research Achievements |
We discussed the security analysis for multivariate public-key cryptography, which is one of the representative examples of post quantum cryptography with resistance to quantum computers, and some prime number testing algorithms as parameter settings for post quantum cryptography. We proposed a practical improvement of F4, one of the practical speed-up methods of the Buchberger algorithm, which is the basis of the Groebner basis algorithm. We also succeeded in implementing the proposed method in the world record breaking 37-variable problem using the proposed method for problems classified as Type II and III in the Fukuoka MQ Challenge, an international contest for security evaluation of multivariable public-key cryptography. Also, we discussed the efficiency of some probabilistic prime number testing algorithms, such as the quadratic Frobenius test and the strong Lucas test, by comparing between these algorithms and the Miller-Rabin test.
|
Academic Significance and Societal Importance of the Research Achievements |
現在広く利用されている公開鍵暗号方式は、素因数分解問題等の計算困難性に基づく。一方、これらの問題は量子計算機を用いて効率的に解かれてしまうことが知られている。実用的な量子計算機が実現し際に、社会に与える影響を軽減するため、現在、量子計算機を用いた攻撃に対して耐性を持つ暗号方式(耐量子計算機暗号、ポスト量子暗号)についての研究や標準化が進められている。本研究ではその代表例の一つである多変数公開鍵暗号の安全性について考察を与えた。これは実用的なパラメータサイズ評価に対する一つの指針を与えるものでもあり、理論的な観点のみならず実用的にも十分意義があると考えられる。
|