Project/Area Number |
19K03655
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
|
Research Institution | Kyushu Institute of Technology |
Principal Investigator |
Takahashi Kin'ya 九州工業大学, 大学院情報工学研究院, 教授 (70188001)
|
Co-Investigator(Kenkyū-buntansha) |
服部 裕司 東北大学, 流体科学研究所, 教授 (70261469)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 流体音 / 管楽器 / 圧縮流体 / 遅延方程式 / 熱音響機器 / バスレフポート / 大規模数値解析 |
Outline of Research at the Start |
DNSおよびLESを用いた圧縮性流体の大規模数値計算を行い、管楽器の音源である流体音(空力音)の発生機構とその特性を解析し、音源と管体の相互作用により発振する楽器の発音 機構の解析を行う。また、その成果の楽器や音響機器の設計への応用を考える。具体的な対象は、オルガンパイプ等のエアリード楽器、クラリネット等のシングルリード木管楽器と金管楽器のマウスピースである。また、運指と音のピッチの関係の基礎研究として遅延方程式モデルの解析も行う。
|
Outline of Final Research Achievements |
Large-scale numerical simulations of compressible fluids using DNS and LES were performed to analyze the generation mechanism and characteristics of aerodynamic sound, which is the sound source of wind instruments, and to explore the sounding mechanism of musical instruments that owing to the interaction between the sound source and the wind body. We considered the application of the results to analyses of acoustic equipment. The specific targets are flue instruments such as organ pipes, reed woodwinds such as clarinets, and mouthpieces for brass instruments. In addition, delay equation models were analyzed as a basic study of the relationship between fingering and sound pitch.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、管楽器の発音機構を低マッハ数における流体音の問題として捉え、大規模流体音響解析を用いて楽器音の発生過程を明らかにした点に学術的な意義がある。研究手法や得られた成果は、管楽器の設計だけでなく、音響機器の設計、キャビティ騒音の発生機構の解析等の広い応用が見込まれる。特に、オルガンパイプのフットの解析成果は、パイプオルガンやその他のエアリード楽器の設計開発に役に立つと考えられる。 また、多重遅延系の基礎解析の成果は、遅延方程式でモデル化可能な様々な現象の解析への応用が期待される。
|