Project/Area Number |
19K04198
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19010:Fluid engineering-related
|
Research Institution | Toyota Technological Institute |
Principal Investigator |
Taro Handa 豊田工業大学, 工学(系)研究科(研究院), 教授 (30284566)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 流体制御 / 超音速流れ / 遷音速流れ / 境界層制御 / フラッピング噴流 / 流体振動子 / 衝撃波 / 境界層 / 境界層流れ / 高速流れ |
Outline of Research at the Start |
本研究では,制御対象の流れに高周波で大きな運動量を付加できる新しいタイプの装置を用いた高速流れ能動制御法を提案する.実験では,本装置の超音速流中での作動状態を明らかにするとともに,異なる運動形態の噴流を作用させたときの超音速境界層の特性の違いを明らかにする.さらに,本装置を用いて衝撃波/境界層干渉流れの能動制御を実際に行い,本装置を用いた高速流れ能動制御法を確立する.
|
Outline of Final Research Achievements |
In this study, the device for creating the jet flapping at several tens of kHz is proposed and developed. The performance of the device is evaluated experimentally. It is observed in the experiments that the jet created from the device successfully flaps at several tens of kHz. It is found from the experimental results that the flapping frequency can be controlled by changing the length of the cavity (resonator) in the device keeping the mass flow rate in it constant. The device is applied to control of the supersonic boundary-layer flow. The results reveal that the device is effective for momentum transfer between the primary flow and the flow close to the wall. The device is further developed so as to create a pair of anti-phase-synchronized flapping jets and the synchronization is observed in the experiments.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発したデバイスは航空機の翼および機体周りの流れや超音速旅客機エンジン空気取入口の流れの能動制御に適用できる.本デバイスを用いた能動制御が可能になれば,定常運航時には空力抵抗やエネルギーの損失を招く既存の受動制御用デバイスを使うことなく,必要なときだけ流れを制御できるようになる.本デバイスを用いることで燃料の使用量が少ない高効率の航空機が実現でき,航空機の環境負荷低減につながると考えられる.
|