Project/Area Number |
19K04234
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Ritsumeikan University (2021) Tokyo Institute of Technology (2019-2020) |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 燃料電池 / 化学反応 / 観察 / DCFC |
Outline of Research at the Start |
本研究では,炭素マーカーによるダイレクトカーボン燃料電池(DCFC)の反応サイトの観察を通して,反応サイトの高密度化を実現する燃料極構造を提案し,DCFCの高出力化を実現する.まず,固体酸化物形燃料電池(SOFC)と溶融炭酸塩を組み合わせたハイブリッドDCFCを開発し,Ni/YSZ燃料極内部にチャーと炭酸塩を分散させ,燃料極内におけるチャーの分散が出力特性に与える影響を明らかにする.さらに,炭素をマーカーとして,燃料極内部における反応サイトを観察する.その知見に基づいて,反応サイトを高密度化できる燃料極構造を提案し,DCFCの出力向上を実現する.
|
Outline of Final Research Achievements |
The mechanisms of power output of a direct carbon fuel cell (DCFC) was studied by correlation with impedance spectroscopy and char observation, focusing on char, which was the fuel of DCFC, was visible. Image analysis of the solidified carbon/carbonate-packed bed showed that the contact area between carbon and the anode linearly increased, resulting in an increase in the power output of the DCFC. It was shown that the contact between carbon and the anode was played an important role in the DCFC power output. In addition, DCFC based on solid oxide fuel cell was developed. Carbon position in the Ni/YSZ anode influenced the power output. An atomic-scale phenomena around the Ni/YSZ interface acting as the reaction site were observed by using first-principles calculation for higher and more stable power output.
|
Academic Significance and Societal Importance of the Research Achievements |
固体燃料であるチャーを直接燃料とできるDCFCの発電メカニズムは十分に明らかにされておらず,電極設計指針が確立されていない状況にある.本研究で得られた成果はDCFCの電極設計指針を与える知見であり,燃料電池の可能性を拡げるとともに,石炭やバイオマスといった固体燃料のエネルギー転換の高性能化に資することが期待される.
|