Project/Area Number |
19K04450
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21040:Control and system engineering-related
|
Research Institution | Tokyo Metropolitan Industrial Technology Research Institute |
Principal Investigator |
Kaneda Yasuaki 地方独立行政法人東京都立産業技術研究センター, 開発本部情報システム技術部通信技術グループ, 上席研究員 (20463010)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 条件付き密度推定 / ノンパラメトリックモデル / ベイズ推定 / スパースモデル / 変分ベイズ / 条件付き確率密度関数 / 密度比推定 / オンライン学習 |
Outline of Research at the Start |
不確かさを含むシステムのモデル化法として確率的モデリングがある.システムを確率的にモデル化することで,カルマンフィルタなどのような不確かさを考慮した制御方策が適用できる.本研究では,多出力系の確率的モデルに対して,ガウス分布といったような分布形状の仮定を必要としないオンライン学習法の確立,そしてその設計法の確立を目指す.研究期間内において,1.多出力・任意分布に対応した確率的モデルの学習法およびその設計法,2.前記モデルのデータ削減法,3.前記モデルのオンライン学習法,の3つを明らかにする.
|
Outline of Final Research Achievements |
Recently, probabilistic modeling methods, in which systems are represented by conditional probability density functions, are widely noticed. In fields of probabilistic modeling, previous studies proposed modeling methods for multi output systems or non-Gaussian distributions, online learning methods, and methods with a little data. However, these methods are studied individually. In this research, we develop an online probabilistic modeling method for multi output systems without a prior information of probability distributions. A proposed method assumes that a probabilistic model can be written as a weighted average of kernel function. We estimate unknown parameters and derive a conditional probability density function of the model by Bayesian inference. Numerical simulations demonstrated effectiveness of the proposed method.
|
Academic Significance and Societal Importance of the Research Achievements |
制御システムを条件付き確率密度関数でモデル化する際、これまではガウス過程回帰やt過程回帰など、パラメトリック分布を仮定した方法がしばしば利用されていた。しかしながら、提案法により、パラメトリック分布を仮定することなく、任意の分布形状の条件付き確率密度関数を求めることができる。このように、条件付き確率密度関数によるモデル化において、統一的な方法を提示した点に学術的な意義がある。また、オンライン学習への拡張が容易であり、学術的な発展性を含んだ成果となっている。
|