Uncertainty Quantification of Flutter Simulations by the Fast Time-Spectral Method
Project/Area Number |
19K04835
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 24010:Aerospace engineering-related
|
Research Institution | Yokohama National University |
Principal Investigator |
Miyaji Koji 横浜国立大学, 大学院工学研究院, 准教授 (60313467)
|
Co-Investigator(Kenkyū-buntansha) |
川村 恭己 横浜国立大学, 大学院工学研究院, 教授 (50262407)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | フラッター / 空力弾性 / 数値流体力学 / 自励振動の高速数値計算 / 不連続応答の応答曲面 / CFD / 不確かさ解析 |
Outline of Research at the Start |
航空機設計における翼の空力弾性連成振動(フラッター)の予測は、航空機の性能と安全性を決定する非常に重要な項目である。 本研究では、フラッター発生時の周期的な流れを効率的に解くことのできる数値計算手法を用いて、計算精度を損なうこと無く、計算時間を大幅(従来の1/20程度)に短縮することを目指す。 さらに、飛行条件の変化や計算モデルの不確かさがフラッターの予測に及ぼす影響を調べるための、不確かさ解析手法を開発する。
|
Outline of Final Research Achievements |
A high-speed numerical calculation method has been developed for flutter, which is an aerodynamic-elastic coupled self-excited vibration of an aircraft wing. A time-spectral method was used, in which a new basic equation is derived using Fourier series expansion instead of the conventional method of solving unsteady equations of fluid and structure in a time-evolving manner, and the solution of the sample time in one cycle is obtained as the steady-state solution. In particular, for the flutter frequency, we proposed and demonstrated a method to minimize the residual of the fluid equation that should be zero in the periodic solution. In addition, in order to quantitatively evaluate the effect of calculation conditions and calculation model uncertainties on calculation results, we developed a response surface method using multi-element polynomial chaos and also multi-wavelet basis expansion. Discontinuous responses were appropriately predicted by the proposed method.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発した時間スペクトル法により,航空機の巡航条件である遷音速域の翼フラッターを,従来法よりも高速に予測することが可能になった.本法は特にフラッターの安定/不安定境界付近の構造応答の予測に有効である.また本研究で開発した応答曲面を用いた不確かさ解析は,高い汎用性を持ち,広範な問題に適用可能である.本研究の成果は航空機の多分野統合最適化設計の主要な部分を担い,より安全で,経済性と環境適合性に優れた航空機開発に大きく貢献する.
|
Report
(4 results)
Research Products
(9 results)