• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Morphing-wing-structure control based on lift load monitoring by integrating optical fiber sensing and deep reinforcement learning

Research Project

Project/Area Number 19K04850
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 24010:Aerospace engineering-related
Research InstitutionJapan Aerospace EXploration Agency

Principal Investigator

Wada Daichi  国立研究開発法人宇宙航空研究開発機構, 航空技術部門, 研究開発員 (10770480)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords深層強化学習 / 可変翼 / 揚力同定 / 機械学習 / 光ファイバセンシング / 構造強度 / 光ファイバセンサ / 荷重同定 / 荷重低減 / 風洞試験
Outline of Research at the Start

ラジコン飛行機等を用いた可変翼技術、すなわち主翼の形状や翼面積等を“鳥の翼のように”大きく変化・変形させる技術研究がある。主翼を変形させて飛ぶことで、失速しながら着陸したり、風に乗って滞空したり、台風のような外乱環境でも墜落しなかったりといった、革新的な飛行性能が実現できると期待されている。
本研究では、鳥の翼のような可変翼を製作する。その中に光ファイバを神経網として装備させる。 “神経情報”を機械学習・深層強化学習によって処理し、大きく変形する翼を有効に動かす技術を構築する。

Outline of Final Research Achievements

Focusing on the wings of unmanned aerial vehicles, this study has developed a technique to identify lift loads based on strain distributions measured by optical fiber sensors. In addition, based on the identified lifts loads and wind directions, a control technique has developed to reduce structural loads in real time. For the identification and control, neural networks were deployed, which were generated by machine learning and deep reinforcement learning, respectively. Furthermore, a morphing wing, which changed its bird-inspired wing shape, has designed and prototyped. The aerodynamic characteristics that varied in accordance with morphing modes were examined. These techniques have been tested in a wind tunnel and demonstrated their feasibility and effectiveness.

Academic Significance and Societal Importance of the Research Achievements

構造負荷低減という、より高次な構造運用目的に対して深層強化学習を適用する好例を示せた。とりわけ「構造状態をセンシングし、飛行環境を認識し、それに合わせて制御する」という体系的なシステムとして技術統合しており、知能的な構造運用の技術体系を提案できた。可変翼によるより豊かな空力表現・活用も含めて、風洞試験により実証できたことで、実用性のある工学的知見となった。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (14 results)

All 2021 2020 2019

All Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results,  Open Access: 4 results) Presentation (6 results) (of which Int'l Joint Research: 1 results) Patent(Industrial Property Rights) (4 results)

  • [Journal Article] Unmanned Aerial Vehicle Pitch Control under Delay Using Deep Reinforcement Learning with Continuous Action in Wind Tunnel Test2021

    • Author(s)
      Wada Daichi、Araujo-Estrada Sergio A.、Windsor Shane
    • Journal Title

      Aerospace

      Volume: 8 Issue: 9 Pages: 258-258

    • DOI

      10.3390/aerospace8090258

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Unmanned Aerial Vehicle Pitch Control Using Deep Reinforcement Learning with Discrete Actions in Wind Tunnel Test2021

    • Author(s)
      Wada Daichi、Araujo-Estrada Sergio A.、Windsor Shane
    • Journal Title

      Aerospace

      Volume: 8 Issue: 1 Pages: 18-18

    • DOI

      10.3390/aerospace8010018

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Smart wing load alleviation through optical fiber sensing, load identification, and deep reinforcement learning2020

    • Author(s)
      Wada Daichi、Tamayama Masato、Murayama Hideaki
    • Journal Title

      Engineering Research Express

      Volume: 2 Issue: 4 Pages: 045004-045004

    • DOI

      10.1088/2631-8695/abbb59

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Wing Load and Angle of Attack Identification by Integrating Optical Fiber Sensing and Neural Network Approach in Wind Tunnel Test2019

    • Author(s)
      Wada Daichi、Tamayama Masato
    • Journal Title

      Applied Sciences

      Volume: 9 Issue: 7 Pages: 1461-1461

    • DOI

      10.3390/app9071461

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 深層強化学習(Proximal Policy Optimization)を用いたUAVの自律的な遷移飛行制御のシミュレーションによる検証2021

    • Author(s)
      和田大地、大瀬戸篤司
    • Organizer
      第39回日本ロボット学会学術講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 鳥の生体模倣によるモーフィング翼の構築2021

    • Author(s)
      大瀬戸篤司、和田大地、玉山雅人
    • Organizer
      第39回日本ロボット学会学術講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 飛行試験におけるひずみ分布計測結果と有限要素解析との比較(その2)2020

    • Author(s)
      佐野 洋一, 有薗仁, 井川寛隆, 和田大地
    • Organizer
      第62回構造強度に関する講演会
    • Related Report
      2020 Research-status Report
  • [Presentation] Real-time Stress Concentration Monitoring of Aircraft Structure during Flights using Optical Fiber Distributed Sensor with High Spatial Resolution2019

    • Author(s)
      和田大地、井川寛隆、玉山雅人、葛西時雄、有薗仁、村山英晶
    • Organizer
      36th Conference & 30th Symposium of the International Committee on Aeronautical Fatigue and Structural Integrity
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 光ファイバひずみ分布計測と深層強化学習による翼の構造負荷低減技術2019

    • Author(s)
      和田大地、玉山雅人
    • Organizer
      第61回構造強度に関する講演会
    • Related Report
      2019 Research-status Report
  • [Presentation] 鳥の生体模倣によるモーフィング翼の設計と開発2019

    • Author(s)
      和田大地、大瀬戸篤司
    • Organizer
      第37回日本ロボット学会学術講演会
    • Related Report
      2019 Research-status Report
  • [Patent(Industrial Property Rights)] モーフィング翼、飛行制御装置、飛行制御方法、及びプログラム2021

    • Inventor(s)
      和田大地
    • Industrial Property Rights Holder
      和田大地
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2021-113444
    • Filing Date
      2021
    • Related Report
      2021 Annual Research Report
  • [Patent(Industrial Property Rights)] 飛行機具及び運営方法2021

    • Inventor(s)
      和田大地、大瀬戸篤司
    • Industrial Property Rights Holder
      和田大地、大瀬戸篤司
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2021-113544
    • Filing Date
      2021
    • Related Report
      2021 Annual Research Report
  • [Patent(Industrial Property Rights)] 展開・ツイスト・スイープ機構を有するモーフィング翼2019

    • Inventor(s)
      和田大地
    • Industrial Property Rights Holder
      和田大地
    • Industrial Property Rights Type
      特許
    • Filing Date
      2019
    • Related Report
      2019 Research-status Report
  • [Patent(Industrial Property Rights)] 光ファイバセンシングと機械学習・深層強化学習を統合した荷重同定・制御技術2019

    • Inventor(s)
      和田大地、木村圭佑、村山英晶
    • Industrial Property Rights Holder
      和田大地
    • Industrial Property Rights Type
      特許
    • Filing Date
      2019
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi