• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a noise-robust scream detection system using deep learning

Research Project

Project/Area Number 19K04935
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 25020:Safety engineering-related
Research InstitutionOsaka Electro-Communication University

Principal Investigator

Hayasaka Noboru  大阪電気通信大学, 情報通信工学部, 教授 (50554573)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords悲鳴検出 / 悲鳴強調 / 深層学習
Outline of Research at the Start

本研究では,深層学習を利用することで実環境でも十分に利用可能な悲鳴検出システムを構築する.これまでの悲鳴検出システムは,雑音に弱く,ブレーキ音などの悲鳴と類似する音で誤検出していた.これらの問題に対し,近年注目を集めている深層学習を導入することで解決を図る.また,小型PCやモバイル端末上で動作するソフトウェアを開発することで,広く一般に普及させ,犯罪の防止・抑止を目指す.

Outline of Final Research Achievements

The purpose of this research is to develop and disseminate a scream detection system that can be used in noisy environments. First, we proposed a scream enhancement method using deep learning to achieve high detection performance even in noisy environments. Through simulations assuming noisy environments, we confirmed that high scream enhancement effects and scream detection performance could be obtained. Next, to enable real-time operation on small PCs, we worked on reducing the computational cost. By utilizing the strong periodicity of screams, we succeeded in achieving the same or better scream enhancement effect with 1/19th of the number of parameters compared to conventional methods. Finally, in order to facilitate the discrimination between scream-like sounds and screams, we proposed a new method that applies the scream enhancement process described above two times, and confirmed its effectiveness.

Academic Significance and Societal Importance of the Research Achievements

本研究により,実環境で使用可能な新たな防犯システムの提供を可能にした.これにより,防犯カメラが設置できないプライバシーに配慮する必要がある場面における安全性が大幅に向上する.他にも,演算コストの削減に成功したことから,小型PCやモバイル端末への実装が可能となり,その結果,悲鳴検出システムの応用先が拡大したといえる.例えば,モバイル端末のアプリケーションとして提供されれば,各個人が所有する端末が通報装置となるため,高い犯罪抑止効果が得られる.その他の利用例として,防犯カメラと併用することで,悲鳴発生源に焦点を当て,より鮮明な証拠映像を捉えることも可能となる.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (2 results)

All 2024 2021

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Noise-Robust Scream Detection Using Wave-U-Net2024

    • Author(s)
      HAYASAKA Noboru、KASAI Riku、FUTAGAMI Takuya
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

      Volume: E107.A Issue: 4 Pages: 634-637

    • DOI

      10.1587/transfun.2023SSL0001

    • ISSN
      0916-8508, 1745-1337
    • Year and Date
      2024-04-01
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Scream Enhancement using Wave-U-Net2021

    • Author(s)
      Riku Kasai, Noboru Hayasaka, Takuya Futagami, Yoshikazu Miyanaga
    • Organizer
      Int'l Workshop on Smart Info-Media Systems in Asia (SISA)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi