Development of transparent antifouling surface with fractal structure using nano-raspberry particles by fabricated by chemically adsorbed monolayers
Project/Area Number |
19K05272
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 29020:Thin film/surface and interfacial physical properties-related
|
Research Institution | Kagawa University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 超撥水性防汚表面 / 化学吸着単分子膜 / ナノ粒子 / 微細凹凸表面 / 超撥水性表面 / 撥油性表面 / プラズマ処理 / 超撥水性 / 表面処理 / 透過性薄膜 / 大気圧プラズマ / 表面物性 / 撥水撥油性 / 防汚表面加工 |
Outline of Research at the Start |
監視カメラ等のレンズ表面に雨滴や汚れが付着すること、また、スマートフォン等のタッチパネルの画面に指紋や皮脂が付着することにより視認性が悪化する問題がある。また、太陽光発電パネルの表面が粉塵などで汚れ発電効率が落ちる問題がある。そこで本研究では、微細凹凸表面構造と撥水性の機能部位をもつ化学吸着単分子膜とを組合せることで、透光性と超撥水性を有する超撥水高透明性基材を開発することで防汚表面を実現する。
|
Outline of Final Research Achievements |
Raindrops and dirt adhere to the lens surface of a surveillance camera. The fingerprint sticks to the touch screen of the smartphone. These are problems because they deteriorate visibility. The surface of the photovoltaic panel gets dirty with dust. It is a problem because the power generation efficiency decreases. In order to solve these problems, we developed a super water-repellent and highly transparent base material with both translucency and antifouling functions. By combining a fine rugged surface structure (100 nanometers in thickness) and a chemisorbed monolayer (one nanometer in thickness) having a water-repellent functional site, a super water-repellent and highly transparent substrate having translucency and super water-repellency (150 degree or more) was developed.
|
Academic Significance and Societal Importance of the Research Achievements |
直径100ナノメートルのシリカ粒子を用いた微細凹凸構造の上に、大気圧低温プラズマを用いて酸化亜鉛薄膜の柱状構造を組合せた。また、大きさの異なるシリカ粒子を組み合わせた微細凹凸構造を作製した。それら表面にフッ化炭素系化学吸着単分子膜を形成することによって超撥水性透光性表面を作製できたことは学術的に意義が大きい。現在、世界におけるスマートフォンの出荷台数は20億台を超えた。これら機器のタッチパネルに防汚表面を提供できることは世界的な波及効果が非常に大きい。また、世界の太陽光発電パネルの出荷量は年々伸びており、防汚表面を提供するで維持コストが低減することから、波及効果が期待できる。
|
Report
(4 results)
Research Products
(5 results)