Increase the accuracy of time scales by using the deep learning technique
Project/Area Number |
19K05288
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 29030:Applied condensed matter physics-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Tanabe Takehiko 国立研究開発法人産業技術総合研究所, 計量標準総合センター, 主任研究員 (30613989)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 協定世界時 / 水素メーザー / 時刻系信号 / 深層学習 / カルマンフィルター / 原子時計 |
Outline of Research at the Start |
代表者所属の産総研計量標準総合センター(NMIJ)では、協定世界時UTCと約10nsの精度で同期した時刻系信号UTC(NMIJ)を運用している。我が国ではUTC(NMIJ)を基準とする周波数標準器が多数用いられており、同期精度の向上は重要な課題である。本研究では、深層学習を活用してUTC(NMIJ)のUTCへの同期精度を向上させることを目的とする。本グループには、UTC(NMIJ)の源振である水素メーザー(HM)とUTCの時刻差データの蓄積がある。そこで、過去のデータを用いた深層学習からHMの挙動を予測することで、より効率的にHMを運用し、UTC(NMIJ)のUTCへの同期精度の向上を目指す。
|
Outline of Final Research Achievements |
The time difference between coordinated universal time (UTC) and a hydrogen maser, which is a master oscillator for the local realization of UTC at the National Metrology Institute of Japan (NMIJ), has been predicted by using one of the deep learning techniques called a one-dimensional convolutional neural network (1D-CNN). Regarding the prediction result obtained by the 1D-CNN, we have observed improvement in the accuracy of prediction compared with that obtained by the Kalman filter. Although more investigations are required to conclude that the 1D-CNN can work as a good predictor, the present results suggest that the computational approach based on the deep learning technique may become a versatile method for improving the synchronous accuracy of UTC(NMIJ) relative to UTC.
|
Academic Significance and Societal Importance of the Research Achievements |
深層学習は近年様々な分野で応用され始めており、革新的な技術革新につながる可能性を秘めている。一方、正確な時刻を認識し共有することは、私たちの日常生活だけでなく、交通機関の運行スケジュール管理やGPS などの衛星測位システムなど、社会の根幹を支える様々な技術においても必要不可欠であり、その重要性は古来より論を待たない。本研究により、時間標準の高精度化に深層学習の手法が有用であることを示す初の成果が得られた。本研究が契機となり、時間標準だけでなく計量標準の高精度化において深層学習が普遍的なツールとなることが期待される。
|
Report
(4 results)
Research Products
(7 results)