Project/Area Number |
19K05297
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Jo Masafumi 国立研究開発法人理化学研究所, 開拓研究本部, 専任研究員 (20400020)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | AlGaN / 半極性面 / PL / EL / 深紫外 / 半極性 / 窒化物半導体 / エピタキシャル成長 / AlN / 双晶 / 発光ダイオード / MOCVD / LED |
Outline of Research at the Start |
本研究では、高温成長とアニール処理を併用することで結晶性・平坦性に優れた半極性AlN仮想基板を作製し、低転位化による分極低減効果の発現と深紫外LEDの高効率化を目指す。具体的には(10-10)面サファイア上の(11-22)Al(Ga)Nにおいて、①高温成長とアニール処理を組み合わせて低転位AlN仮想基板を作製する。②この低転位仮想基板上にAlGaN量子井戸構造を作製し、(11-22)面における非発光再結合中心の特定、制御ならびに分極低減効果の検証を行う。③さらに、これらの結果を踏まえ半極性深紫外LEDの作製と高効率化をはかる。
|
Outline of Final Research Achievements |
We have succeeded in reducing dislocation density in (11-22)AlN virtual substrates by combining a multi-step high-temperature growth method and external annealing treatment, resulting in a two-digit reduction in defect density. (11-22)AlGaN quantum wells were fabricated on high-quality AlN virtual substrates, and clear UVC emission was obtained at room temperature. Furthermore, current injection luminescence at UVB was also achieved. The (10-13) surface was also successfully improved to high quality, and quantum well luminescence in the UVB region at room temperature was achieved for both photoexcitation and current injection.
|
Academic Significance and Societal Importance of the Research Achievements |
深紫外光は殺菌をはじめとした幅広い用途を持つため、小型で堅牢、波長可変といった特性を持つLEDを用いた深紫外光源が実現できれば社会の様々な場面で役に立つことが期待される。深紫外LEDの高性能化アプローチの1つとして、半極性面を用いた結晶成長が注目されているが、従来は結晶性が低く満足な特性は得られていなかった。本研究では成長方法を工夫することにより結晶の高品質化を実現し、深紫外波長域において半極性面デバイスで初の室温動作を達成した。本結果は今後の半極性面デバイス実用化へ大きく前進したものといえる。
|