Synthesis and development of nano-carbon compounds and materials
Project/Area Number |
19K05428
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 33010:Structural organic chemistry and physical organic chemistry-related
|
Research Institution | Fukuoka University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | グラフェン / 硫黄 / セレン / 有機合成 / 分子構造 / 核磁気共鳴分光 / 紫外可視吸収分光 / 光電子分光法 / 電気化学 / 有機薄膜 / 環化反応 / 酸素 / 電子構造 / 固体構造 / ナノ炭素材料 / 有機薄膜材料 / 典型元素 |
Outline of Research at the Start |
黒鉛を剥離することで単層グラフェンが単離され、特異な性質が見出されてきた。しかし、従来法では均一な分子構造を有するグラフェンを得ることは困難である。本研究課題では炭素-炭素結合形成反応を利用することでグラフェンシートの簡便・迅速・大量合成法を開発する。さらに、分子骨格内の元素を変換できる合成法を適応することで、グラフェン骨格内に窒素や硫黄など典型元素を含む物質の合成法も開発する。これらの手法で合成した物質の有機薄膜材料開発のために、優れた電子輸送特性を示す分子の迅速な探索を行う。
|
Outline of Final Research Achievements |
This studies demonstrated that thioethers undergo a Lewis- or Bronsted-acid-promoted cyclization reaction to afford thiopyrylium salts in good yield. Me3SiOTf and TfOH are suitable Lewis or Bronsted acids for the intramolecular cyclizations of the thioether precursors. The new transformation widely tolerates thioethers that contain methyl-substituted arenes, chloro-substituted arenes, pyrenes, and even those that contain heterocyclic moieties such as dibenzothiophene and carbazole. The reaction mechanism of the cyclization of the thioether was also explored. This new and highly versatile cyclization not only extends the scope of the synthetic methods that can be used to synthesize thiopyrylium-fused cationic frameworks, but will potentially also expand the use of thiopyrylium molecules in materials chemistry.
|
Academic Significance and Societal Importance of the Research Achievements |
単層グラフェンが剥離法で単離されて以降、「薄く」・「軽く」・「高強度」の炭素薄膜材料に高い関心が集まっている。本研究では、市販のアルデヒド・アセトフェノン・アルキンを用いた付加-脱水反応で容易に酸素原子を含むナノグラフェン前駆体を合成することに成功した。さらに、これら前駆体と炭素求核種との反応により、芳香族炭化水素骨格を形成することも見出した。更に、硫黄やセレン原子を骨格内に含むグラフェン型分子の合成法も明らかにした。つまり、容易にナノサイズのグラフェン分子を合成する手法を開発できた。
|
Report
(4 results)
Research Products
(14 results)