Creation of Innovative Electrochemical Capacitors Using Anion Exchange Membrane as Polymer Electrolyte for Use in Fuel Cells
Project/Area Number |
19K05596
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 35020:Polymer materials-related
|
Research Institution | University of Yamanashi |
Principal Investigator |
Nohara Shinji 山梨大学, 大学院総合研究部, 教授 (40326278)
|
Co-Investigator(Kenkyū-buntansha) |
宮武 健治 山梨大学, 大学院総合研究部, 教授 (50277761)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 電気化学キャパシタ / アニオン導電性高分子電解質膜 / 電気二重層キャパシタ / 活性炭電極 / マンガン酸化物電極 / 酸化マンガン系電極 |
Outline of Research at the Start |
本研究では、電気二重層キャパシタ(EDLC)に燃料電池用アニオン(OH-)導電性高分子電解質膜を応用し、その革新的全固体型EDLCの実現可能性を実証していく。本学で開発した世界トップクラスの性能を有するアニオン導電性高分子電解質膜を用いてEDLCを構築し、そのセル性能(容量、レート特性、サイクル寿命など)を評価するとともに、さらなる最適な電解質/電極界面構造や高分子構造を設計し、実証していく。また、アニオン導電性高分子電解質膜を酸化マンガン系電極と活性炭電極を組み合わせたハイブリッド(非対称)キャパシタにも応用し、新規全固体型2V超級ハイブリッドキャパシタの実現可能性も検証する。
|
Outline of Final Research Achievements |
In order to create innovative electrochemical capacitors using anion exchange membrane as polymer electrolyte for use in fuel cells, we investigated effects of the membrane thickness and interface structure with activated carbon electrodes on electrochemical properties of the electric double layer capacitor (EDLC) cell. By optimizing thickness of electrolyte membrane and electrode/electrolyte interface structure, we succeeded in constructing an excellent EDLC cell with better rate-capability and lower cell resistance, compared with a cell using KOH solution. Furthermore, it was clarified that the electrolyte membrane had a good adaptability to a 2.5 V-class asymmetric capacitor composed of activated carbon and manganese-nickel oxide solid solution electrodes.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果は、電気化学キャパシタの全固体化あるいは擬固体化といった研究分野の発展に寄与するだけでなく、燃料電池および電気化学キャパシタ(スーパーキャパシタ)の両分野において電解質や電極材料の選択肢が増え、これらの研究分野の発展を加速させることができる。このことは、将来のカーボンミュートラル社会の実現に向け、蓄電デバイスの高性能化、多様化にもつながり、その点で非常に大きな社会的意義を有している。
|
Report
(4 results)
Research Products
(4 results)