Singlet Fission Materials by Engineering Inter-Exciton Vibronic Coupling
Project/Area Number |
19K05629
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 35030:Organic functional materials-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 遅延蛍光 / 一重項励起子分裂 / 項間交差 / 逆項間交差 / 内部転換 / 多電子励起配置 / Fermiの黄金律 / 有機EL / 速度定数 / 振電相互作用 / スピン軌道相互作用 / 熱活性型遅延蛍光 / 多重共鳴 / 一重項分裂 / テトラセン |
Outline of Research at the Start |
一重項励起子分裂(SF: Singlet Fission)を示す材料は、有機デバイスの特性を飛躍的に高められる効果を持つ材料として注目されている。SFを効率よく起こす材料を実現するためには、励起子間に働く振電相互作用を制御する分子設計が有効であると予想される。 本研究では、励起子間に働く振電相互作用を計算するための理論化学手法を開発することで、振電相互作用を制御して高効率なSF材料を開発するための分子設計指針を確立する。 本研究により高効率なSF材料を開発するための分子設計指針を確立することができれば、その成果は、従来の理論限界を超える特性を示す新機構有機デバイスの創出に貢献できると期待される。
|
Outline of Final Research Achievements |
Radiative decays (fluorescence and phosphorescence) and nonradiative decays (internal conversion and intersystem crossing) occur simultaneously in organic materials. The competition between these electronic transitions determines material properties. Hence, if one can accurately calculate the rate constants for all the relevant electronic transitions of organic materials, one can understand the excited-state decay mechanism and realize a rapid and accurate material screening method. In this study, we developed a method of quantitatively calculating rate constants for fluorescence, phosphorescence, internal conversion, and intersystem crossing. We applied this method to representative molecular materials used in organic light-emitting diodes and organic solar cells. We successfully reproduced experimental rate constants and confirmed the validity of our approach.
|
Academic Significance and Societal Importance of the Research Achievements |
分子構造をインプットとして、全ての発光・熱失活過程について、速度定数を高速かつ定量的に計算できれば、励起状態からの失活過程や発光特性を高精度に予測し、材料探索のスピードを大幅に加速できる。このようなコンセプトに基づいて、本研究課題では、蛍光、りん光、内部転換および項間交差の速度定数を高速かつ定量的に計算できる理論手法を開発し、実際の有機エレクトロニクス材料(有機EL材料、有機太陽電池材料)に適用することで、計算手法の妥当性および実用性を実証した。 本研究課題の成果は、材料開発のスピードを大幅に加速し、我が国の材料開発競争力の強化に波及すると考えている。
|
Report
(4 results)
Research Products
(11 results)