Design of high temperature CO2 sorbent practical use for carbon recycling
Project/Area Number |
19K05679
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Waseda University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | ハニカム / 吸収速度 / 形状設計 / 多孔質体 / システム評価 / リチウムシリケート / CO2分離回収 / 核酸律速 / 圧力損失 / 二塔切替 / カーボンリサイクル / 焼結 / 化学反応 / Dusty gas model / Solid Sorbent / Cyclic Capacity / Effective diffusivity / Carbon Recycling / Iron and Steel Making |
Outline of Research at the Start |
本提案はCO2 Capture and Utilization(CCU)のために,500~900℃の高温域で繰り返し利用可能で,自重の30%以上の吸収容量のあるCO2吸収材,リチウムシリケート(以下LS)を用い,製鉄業のCO2分離回収システム実用化を目指した研究である.材料面においてはLS成形体のサイクル容量維持率の格段の向上を図る.反応器レベルでは,既反応層による物質輸送抵抗の影響と処理ガスの圧力損失を最小化しつつ,反応器の小型化と吸収量確保を達成するハニカム形状を数値計算にて設計し,その性能を実験的に評価する.また,分離CO2の利用として炭素循環製鉄システムのプロセス設計も行う.
|
Outline of Final Research Achievements |
Aiming at the advanced application of CCU technology to iron and steelmaking process, a CO2 capture and separation system consisting of one pair of absorber and stripper vessels packed with honeycomb-shaped lithium silicate (LS) was developed. Sintering simulation revealed the effect of pore shapes on micropore structure. The recipe and preparation procedure for the LS was established, which can maintain cycle capacity by adding an optimal amount of pore-forming agent using experimental and simulation results. The honeycomb-shaped LS was designed by numerical calculation solving mass, energy and CO2 conservation equations modelled with single channel. The cross-sectional shape of the honeycomb was determined to maximize CO2 separation performance and it was actually fabricated. By applying the LS to the system, process simulation predicted far less energy penalty than conventional technologies.
|
Academic Significance and Societal Importance of the Research Achievements |
再生可能エネルギーの導入によって比較的脱炭素化が容易な民生部門に対し,製鉄業をはじめとする脱炭素困難部門でのCO2排出削減はソリューションが限られる.炭素循環製鉄はそのソリューションとして期待されており,本成果はその主要機器となるCO2分離回収システムにおいて,分離回収エネルギーを大幅に低減する高温CO2吸収材「リチウムシリケート」にかかるの研究成果である.成果のハイライトは,実験と数値計算を基にハニカム型の成形体を設計し,運転条件とともに最適化した結果,分離回収エネルギーとして1.7 GJ/t-CO2の達成見込みを得たことであり,2050年カーボンニュートラル達成に貢献するものである.
|
Report
(4 results)
Research Products
(3 results)