• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Hierarchical interactions of predictions and prediction errors in normal and schizophrenic brains

Research Project

Project/Area Number 19K06906
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 46010:Neuroscience-general-related
Research InstitutionThe University of Tokyo

Principal Investigator

Chao Zenas  東京大学, ニューロインテリジェンス国際研究機構, 准教授 (30532113)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
KeywordsPredictive coding / Brain network / Hierarchy / Prediction signal / Theoretical model / Auditory sequence / Cortical oscillation / EEG / Schizophrenia / Brain / Network
Outline of Research at the Start

We will investigate three specific aims to evaluate the predictive-coding theory across sensory modalities and in both healthy and schizophrenic human subjects.
Aim 1. Causal interactions across hierarchies: How prediction and prediction-error signals causally interact across hierarchies and frequencies?
Aim2. Predictive coding across sensory modalities: How prediction and prediction-error signals interact when the sensory input is unimodal or multimodal?
Aim 3. Predictive coding in schizophrenic brain: How prediction and prediction-error signals differ between the normal and schizophrenic brain?

Outline of Final Research Achievements

The human brain is proposed to harbor a hierarchical predictive coding neuronal network. In support of this theory, feedforward signals for prediction error have been reported, but feedback prediction signals has been elusive due to their causal entanglement with prediction-error signals. Here, we use a quantitative model to decompose these signals in electroencephalography, and identify their neural signatures across two functional hierarchies. Two prediction signals are identified: a low-level signal representing the tone-to-tone transition in the high beta frequency band, and a high-level signal for the multi-tone sequence structure in the low beta band. Our findings reveal a frequency ordering of prediction signals and their hierarchical interactions with prediction-error signals supporting predictive coding theory. The above results are published: Chao Z. et al. (2022), Comms Biology, 5(1), 1076.

Academic Significance and Societal Importance of the Research Achievements

科学レベルでは、予測コーディングは、脳が利用できる圧倒的な量の感覚データを理解するための解決策になる可能性があり、その理解はニューロモルフィック エンジニアリングとニューロロボティクスのさらなる発展に役立つ可能性があります。 臨床レベルでは、個々の予測信号と予測誤差信号を識別し、健康な個人と精神病患者の両方でそれらの調整を監視することで、統合失調症や自閉症などの精神障害の予後および/または診断のための神経マーカーの開発に役立つ可能性があります。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (7 results)

All 2022 2021 2019

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results)

  • [Journal Article] A quantitative model reveals a frequency ordering of prediction and prediction-error signals in the human brain2022

    • Author(s)
      Chao Zenas C.、Huang Yiyuan Teresa、Wu Chien-Te
    • Journal Title

      Communications Biology

      Volume: 5 Issue: 1 Pages: 1-18

    • DOI

      10.1038/s42003-022-04049-6

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Proactive and frequency-specific prediction signals in hierarchical predictive coding2022

    • Author(s)
      Zenas C Chao, Yi-Yuan Huang, Chien-Te Wu
    • Organizer
      Neuro2022
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Hierarchical prediction errors in crossmodal sequence processing: an EEG functional connectivity study2022

    • Author(s)
      Yi-Yuan Huang, Chien-Te Wu, Shinsuke Koike, Zenas C. Chao
    • Organizer
      Neuro2022
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Probing hierarchical prediction errors under different prediction precisions in auditory sequences: an ERP study2021

    • Author(s)
      Yi-Yuan Huang
    • Organizer
      Neuroscience 2021, Society of Neuroscience
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Predictive-coding signals in primate brain2019

    • Author(s)
      Chao ZC
    • Organizer
      Tsinghua University Institute for Artificial Intelligence and International Research Center for Neurointelligence Workshop
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Searching for predictive-coding signals in primate brain2019

    • Author(s)
      Chao ZC
    • Organizer
      Neuroscience Program of Academia Sinica (NPAS) Symposium
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A Predictive coding model accounts for the altered information processing in individuals with schizophrenia2019

    • Author(s)
      Huang YY
    • Organizer
      The OTROC Annual Conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi