• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Hybrid method for iterative CT reconstruction and deep learning

Research Project

Project/Area Number 19K08093
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionHirosaki University (2021-2022)
The University of Tokyo (2019-2020)

Principal Investigator

Ozaki Sho  弘前大学, 理工学研究科, 助教 (60615326)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords画像再構成 / 深層学習 / CT / 画像誘導放射線治療 / 深層ニューラルネット / 画像変換 / モダリティ変換
Outline of Research at the Start

近年、深層学習を用いた超解像技術は飛躍的に進歩している。一方で、情報が不足した疎な投影データからの画像再構成は、これまで逐次近似法がよく用いられて研究されてきた。深層学習による超解像技術はビックデータからの情報によって、不足した情報を補い画質を改善させる方法であるのに対して、逐次近似法は人間の知識によって情報を補い画質を改善させる。本研究課題では、ビックデータに基づく深層学習と人間の知識に基づく逐次近似法を相補的に組み合わせることによって、まったく新しい画像再構成法を開発する。さらにこのハイブリッド画像再構成法を画像誘導放射線治療に応用することによって、より高い精度の放射線治療を実現する。

Outline of Final Research Achievements

We develop a hybrid method of iterative CT reconstruction and deep learning. For the pre-training of generator and discriminator, we train CycleGAN model to improve Mega-voltage CT (MVCT). We introduce several loss functions, which impose structure preservation of the input image. Our deep learning model nicely improve image quality of MVCT with reducing the structure changes. Then, we incorporate the generator into the iterative CT reconstruction. This hybrid CT reconstruction method exceeds the previous reconstruction methods such as iterative reconstruction and deep image prior reconstruction in terms of SSIM and PSNR.

Academic Significance and Societal Importance of the Research Achievements

MVCTやCone-beam CTなどの位置照合用CTは、高精度の画像誘導放射線治療を行う上で必須の装置である。しかしながら一般にこれらのCTの画質は低くく、これは治療の精度に関わる問題である。本研究で開発した深層学習モデルやハイブリッド画像再構成法は、位置照合用CTの画質を大幅に改善した。この成果は、画像誘導放射線治療の際の位置照合の精度を高め、より高精度の放射線治療を実現できると期待される。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (11 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 3 results) Presentation (6 results) (of which Int'l Joint Research: 4 results)

  • [Int'l Joint Research] Accuray Incorporated(米国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Training of deep cross‐modality conversion models with a small dataset, and their application in megavoltage CT to kilovoltage CT conversion2022

    • Author(s)
      Ozaki S, Kaji S, Nawa K, Imae T, Aoki A, Nakamoto T, Ohta T, Nozawa Y, Yamashita H, Haga A, Nakagawa K
    • Journal Title

      Medical Physics

      Volume: - Issue: 6 Pages: 1-14

    • DOI

      10.1002/mp.15626

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Training modality conversion models with small data and its application to MVCT to kVCT conversion2021

    • Author(s)
      S. Ozaki, S. Kaji, K. Nawa, T. Imae, A. Aoki, T. Nakamoto, T. Ohta, Y. Nozawa, A. Haga and K. Nakagawa
    • Journal Title

      Radiotherapy and Oncology

      Volume: 161 Pages: 586-587

    • DOI

      10.1016/s0167-8140(21)07034-1

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Fast Statistical Iterative Reconstruction for Mega-voltage Computed Tomography2020

    • Author(s)
      S. Ozaki, A. Haga, E. Chao, C. Maurer, K. Nawa, T. Ohta, T. Nakamoto, Y. Nozawa, T. Magome, M. Nakano, K. Nakagawa
    • Journal Title

      The Journal of Medical Investigation

      Volume: 67 Issue: 1.2 Pages: 30-39

    • DOI

      10.2152/jmi.67.30

    • NAID

      130007839921

    • ISSN
      1343-1420, 1349-6867
    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Visual enhancement of Cone‐beam CT by use of CycleGAN2020

    • Author(s)
      Kida S, Kaji S, Nawa K, Imae T, Nakamoto T, Ozaki S, Ohta T, Nozawa Y, Nakagawa K.
    • Journal Title

      Medical Physics

      Volume: 47(3) Issue: 3 Pages: 998-1010

    • DOI

      10.1002/mp.13963

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Image quality enhancement of medical images by use of deep learning with a small amount of training data2023

    • Author(s)
      Sho Ozaki
    • Organizer
      Interdisciplinary Science Conference in Okinawa (ISCO 2023) -Physics and Mathematics meet Medical Science-
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Iterative CT reconstruction with deep neural networks2023

    • Author(s)
      Sho Ozaki
    • Organizer
      The 2nd International Conference on Radiological Physics and Technology (ICRTP)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Iterative reconstruction of MVCT with deep neural networks2023

    • Author(s)
      Sho Ozaki
    • Organizer
      ESTRO 2023 Annual Meeting
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Training modality conversion models with small data and its application to MVCT to kVCT conversion2021

    • Author(s)
      Sho Ozaki
    • Organizer
      ESTRO 2021 Annual Meeting
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Denoising and Contrast Enhancement of MVCT Using Deep Learning-based Methods2021

    • Author(s)
      尾崎翔
    • Organizer
      第121回日本医学物理学会学術大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Denoising and Contrast Enhancement of MVCT Using Deep Learning-based methods2021

    • Author(s)
      尾崎翔
    • Organizer
      第121回日本医学物理学会学術集会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi