• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Establishment of a next-generation prognostic model for early-stage lung cancer by integrated analysis of ultra-high-resolution morphological and functional images.

Research Project

Project/Area Number 19K08149
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionNagoya University

Principal Investigator

Iwano Shingo  名古屋大学, 医学系研究科, 准教授 (90335034)

Co-Investigator(Kenkyū-buntansha) 中村 彰太  名古屋大学, 医学部附属病院, 講師 (20612849)
伊藤 信嗣  名古屋大学, 医学部附属病院, 講師 (50597846)
伊藤 倫太郎  名古屋大学, 医学系研究科, 特任助教 (80813336)
Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords原発性肺癌 / 高精細CT / PET/CT / 超高精細CT撮影 / 機能画像 / 人工知能 / 胸壁浸潤癌 / 肺癌 / FDG-PET / 超高精細CT
Outline of Research at the Start

原発性肺癌の臨床病期分類は胸部CTに様々な画像検査を組み合わせて決定され、最適な治療方針を決定する基盤情報である。しかし限られた空間分解能による形態診断の限界により病理病期分類との間に差を生じることがある。本研究では肺癌症例の膨大な画像・手術・病理データを活用し、浸潤性・予後に関連する超高精細CT、MRI、PETによる新たなバイオマーカー構築を探索し、これらを統合的に解析することで早期肺癌の予後予測の精度向上、次世代の肺癌病期分類改訂に貢献する。

Outline of Final Research Achievements

In this study, we searched for biomarkers that can predict the invasiveness and prognosis of primary lung cancer in an integrated manner by 3D image analysis and AI of high-definition CT and FDG-PET/CT. The study period was extended to five years due to the Corona disaster, but the following four findings were published as conference presentations and scientific papers.
1) 3D iodine density measurement by contrast-enhanced dual-energy CT can predict the prognosis of lung cancer; 2) quantitative PET/CT data can diagnose mediastinal lymph node metastasis in non-small cell lung cancer; 3) chest wall invasion of primary lung cancer can be diagnosed based on ultra-high-resolution CT findings; 4) 5 mm artificial intelligence to generate virtual high-resolution CT images from 5 mm thick CT images of lung cancer.

Academic Significance and Societal Importance of the Research Achievements

この研究成果は、原発性肺癌の診断と予後予測を飛躍的に向上させる新しい方法を提供しました。高精細CTとFDG-PET/CTを活用し、AIを用いて得られたデータから、より正確な診断と予後予測が可能となりました。特に、造影dual-energy CTや超高精細CTによる新たな診断法や、AIによる画像生成技術の開発は、医療現場での迅速かつ的確な治療方針の決定に寄与し、患者の生存率向上と医療費の削減に大きく貢献します。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (13 results)

All 2024 2023 2022 2021 2020 2019

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 7 results) Presentation (6 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Development of automatic generation system for lung nodule finding descriptions2024

    • Author(s)
      Momoki Yohei、Ichinose Akimichi、Nakamura Keigo、Iwano Shingo、Kamiya Shinichiro、Yamada Keiichiro、Naganawa Shinji
    • Journal Title

      PLOS ONE

      Volume: 19 Issue: 3 Pages: 0300325-0300325

    • DOI

      10.1371/journal.pone.0300325

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Measurement of solid size in early-stage lung adenocarcinoma by virtual 3D thin-section CT applied artificial intelligence2023

    • Author(s)
      Iwano Shingo、Kamiya Shinichiro、Ito Rintaro、Kudo Akira、Kitamura Yoshiro、Nakamura Keigo、Naganawa Shinji
    • Journal Title

      Scientific Reports

      Volume: 13 Issue: 1 Pages: 21709-21709

    • DOI

      10.1038/s41598-023-48755-5

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Prognostic impact of highly solid component in early-stage solid lung adenocarcinoma2023

    • Author(s)
      Kato Taketo、Iwano Shingo、Hanamatsu Yuki、Nakaguro Masato、Emoto Ryo、Okado Shoji、Sato Keiyu、Noritake Osamu、Nakanishi Keita、Kadomatsu Yuka、Ueno Harushi、Ozeki Naoki、Nakamura Shota、Fukumoto Koichi、Takeuchi Tamotsu、Karube Kennosuke、Matsui Shigeyuki、Chen-Yoshikawa Toyofumi Fengshi
    • Journal Title

      Quantitative Imaging in Medicine and Surgery

      Volume: 13 Issue: 9 Pages: 5641-5652

    • DOI

      10.21037/qims-23-36

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Iodine-related attenuation in contrast-enhanced dual-energy computed tomography in small-sized solid-type lung cancers is associated with the postoperative prognosis2021

    • Author(s)
      Iwano Shingo、Kamiya Shinichiro、Ito Rintaro、Nakamura Shota、Naganawa Shinji
    • Journal Title

      Cancer Imaging

      Volume: 21 Issue: 1 Pages: 7-7

    • DOI

      10.1186/s40644-020-00368-1

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Micro-computed tomography images of lung adenocarcinoma: detection of lepidic growth patterns2020

    • Author(s)
      Nakamura S, et al.
    • Journal Title

      Nagoya Journal of Medical Science

      Volume: 82 Issue: 1 Pages: 25-31

    • DOI

      10.18999/nagjms.82.1.25

    • NAID

      120006797869

    • ISSN
      2186-3326
    • URL

      https://nagoya.repo.nii.ac.jp/records/29349

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Postoperative Recurrence of Clinical Early-Stage Non-Small Cell Lung Cancers: A Comparison Between Solid and Subsolid Nodules2019

    • Author(s)
      Iwano S, et al.
    • Journal Title

      Cancer Imaging

      Volume: 19 Issue: 1 Pages: 33-33

    • DOI

      10.1186/s40644-019-0219-3

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Utility of Metabolic Parameters on FDG PET/CT in the Classification of Early-Stage Lung Adenocarcinoma: Prediction of Pathological Invasive Size2019

    • Author(s)
      Iwano S, et al.
    • Journal Title

      Clin Nucl Med

      Volume: 44 Issue: 7 Pages: 560-565

    • DOI

      10.1097/rlu.0000000000002591

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] CT findings of lung cancer involving the Chest Wall2023

    • Author(s)
      Iwano Shingo、 Kamiya Shinichiro、 Ito Rintaro、 Nakamura Shota、 Yoshikawa Toyofumi、 Naganawa Shinji
    • Organizer
      第82回日本医学放射線学会総会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 胸壁浸潤癌の超高精細CT所見の検討2023

    • Author(s)
      岩野信吾、伊藤倫太郎、神谷晋一朗、中村彰太、芳川豊史、長縄慎二
    • Organizer
      日本医学放射線学会第172回中部地方会
    • Related Report
      2022 Research-status Report
  • [Presentation] CT findings of lung cancer involving the Chest Wall2023

    • Author(s)
      Shingo Iwano, Rintaro Ito, Shinichiro Kamiya, Nakamura Shota, Toyofumi Yoshikawa, Shinji Naganawa
    • Organizer
      第82回日本医学放射線学会総会
    • Related Report
      2022 Research-status Report
  • [Presentation] 小型胸壁浸潤癌の胸部CT所見2023

    • Author(s)
      岩野信吾、伊藤倫太郎、神谷晋一朗、中村彰太、芳川豊史、長縄慎二
    • Organizer
      第14回呼吸機能イメージング研究会学術集会
    • Related Report
      2022 Research-status Report
  • [Presentation] Measurement of Solid Size in Early-Stage Lung Adenocarcinoma by Virtual Thin-Section CT-applied Artificial Intelligence2022

    • Author(s)
      Shingo Iwano, Shinichiro Kamiya, Rintaro Ito, Akira Kudo, Yoshiro Kitamura, Keigo Nakamura, Shinji Naganawa
    • Organizer
      ECR 2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] AIによる肺癌のCT画像の高精細化2022

    • Author(s)
      岩野信吾、神谷晋一朗、伊藤倫太郎、工藤彰、北村嘉郎、中村佳児、長縄慎二
    • Organizer
      第13回呼吸機能イメージング研究会学術集会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi