• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development and Verification of Symbolic-Numeric Computation Suitable for Approximation, Transformation, and Interpolation Operations of Algebraic Surfaces

Research Project

Project/Area Number 19K11827
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionKobe University

Principal Investigator

Nagasaka Kosaku  神戸大学, 人間発達環境学研究科, 准教授 (70359909)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2022: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Keywords数値・数式融合計算 / 近似GCD / 近似Groebner基底 / SLRA / 補間法 / Bernstein基底 / 数値数式融合計算 / 近似代数 / 計算機代数 / Groebner basis detection / NewtonSLRA / 有理関数近似 / 代数曲面 / 代数曲線
Outline of Research at the Start

代数曲面(代数曲線を含む)は,平面や空間における形状データ生成にも使われるが,単一の代数曲面で複雑な形状を実現しようとすると,著しく高い次数の多項式が必要となってしまう。本研究課題では,数値・数式融合計算(近似GCD,近似因数分解,近似グレブナー基底など)を用いることで,様々な形で厳密な代数式を近似した形で扱えうることに着目し,代数曲面の近似・変形・補間の各操作に最適となる数値・数式融合計算の開発と検証を行う。

Outline of Final Research Achievements

In practical calculations, unavoidable errors can deteriorate the properties of polynomials, making them difficult to handle. Therefore, we advanced research on the GCD and Groebner bases, which correspond to methods for finding solutions to systems of equations, as fundamental polynomial operations. As a result of our research, we proposed methods to improve resistance to errors through basis transformation, ways to improve known methods to reduce errors, and new methods that enable calculations even when the degree or the number of variables in a polynomial is large. Ultimately, we demonstrated examples of calculations for problems that were difficult to solve with previous methods.

Academic Significance and Societal Importance of the Research Achievements

単一の代数曲面(代数曲線を含む)で複雑な形状を実現しようとすると,著しく高い次数の多項式が必要となってしまう。本研究課題では,数値・数式融合計算(厳密だが遅い計算方法と,高速だが不正確な計算方法を融合させる計算)を用いることで,様々な形で厳密な代数式を近似した形で扱えうることに着目し,実践的な計算において不可避の誤差を含んだ多項式に対して,種々の操作の基盤となる計算アルゴリズムの開発を行い,その有効性を計算例により示した。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (26 results)

All 2023 2022 2021 2020 2019 Other

All Journal Article (10 results) (of which Peer Reviewed: 5 results,  Open Access: 6 results) Presentation (15 results) (of which Int'l Joint Research: 6 results) Remarks (1 results)

  • [Journal Article] Conditional Groebner Basis: Groebner Basis Detection with Parameters2023

    • Author(s)
      Nagasaka Kosaku、Oshimatani Ryo
    • Journal Title

      ACM Communications in Computer Algebra

      Volume: 57 Issue: 3 Pages: 160-164

    • DOI

      10.1145/3637529.3637540

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] SLRA Interpolation for Approximate GCD of Several Multivariate Polynomials2023

    • Author(s)
      Nagasaka Kosaku
    • Journal Title

      Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation, ISSAC 2023

      Volume: - Pages: 470-479

    • DOI

      10.1145/3597066.3597116

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 二変数多項式の近似GCD2023

    • Author(s)
      長坂耕作
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2255

    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Journal Article] パラメータを伴ったGroebner基底の構造的な検出について2022

    • Author(s)
      大島谷遼, 長坂耕作
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2224 Pages: 79-94

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] 近似Groebner基底の逐次算法に向けて(再訪)2022

    • Author(s)
      長坂耕作
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2224 Pages: 95-102

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] Relaxed NewtonSLRA for Approximate GCD2021

    • Author(s)
      Nagasaka Kosaku
    • Journal Title

      Lecture Notes in Computer Science

      Volume: 12865 Pages: 272-292

    • DOI

      10.1007/978-3-030-85165-1_16

    • ISBN
      9783030851644, 9783030851651
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] 近似GCDでのNewtonSLRAアルゴリズムの効果的な利用に向けて2021

    • Author(s)
      長坂耕作
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2185 Pages: 16-21

    • NAID

      120007141777

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] Approximate square-free part and decomposition2021

    • Author(s)
      Nagasaka Kosaku
    • Journal Title

      Journal of Symbolic Computation

      Volume: 104 Pages: 402-418

    • DOI

      10.1016/j.jsc.2020.08.004

    • NAID

      120006952743

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Approximate GCD by Bernstein Basis, and its Applications2020

    • Author(s)
      Nagasaka Kosaku
    • Journal Title

      Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, ISSAC 2020

      Volume: - Pages: 372-379

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] バーンスタイン基底関数を用いた近似GCDの評価について2020

    • Author(s)
      長坂耕作
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2159 Pages: 132-136

    • NAID

      120006956633

    • Related Report
      2020 Research-status Report
    • Open Access
  • [Presentation] 多変数多項式の近似GCD2023

    • Author(s)
      長坂耕作
    • Organizer
      研究集会 Computer Algebra - Foundations and Applications
    • Related Report
      2023 Annual Research Report
  • [Presentation] Conditional Groebner Basis: Groebner Basis Detection with Parameters2023

    • Author(s)
      Kosaku Nagasaka, Ryo Oshimatani
    • Organizer
      The 48th International Symposium on Symbolic and Algebraic Computation (ISSAC 2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] SLRA Interpolation for Approximate GCD of Several Multivariate Polynomials2023

    • Author(s)
      Kosaku Nagasaka
    • Organizer
      The 48th International Symposium on Symbolic and Algebraic Computation (ISSAC 2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 二変数多項式の近似GCD2022

    • Author(s)
      長坂耕作
    • Organizer
      研究集会 Computer Algebra - Foundations and Applications
    • Related Report
      2022 Research-status Report
  • [Presentation] Groebner basis detection with parameters2022

    • Author(s)
      Kosaku Nagasaka, Ryo Oshimatani
    • Organizer
      Computer Algebra in Scientific Computing: 24th International Workshop, CASC 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] パラメータを伴ったGroebner基底の構造的な検出法の改善2022

    • Author(s)
      長坂耕作
    • Organizer
      日本数式処理学会第31回大会
    • Related Report
      2022 Research-status Report
  • [Presentation] 近似Groebner基底の逐次算法に向けて(再訪)2021

    • Author(s)
      長坂耕作
    • Organizer
      研究集会 Computer Algebra - Theory and its Applications
    • Related Report
      2021 Research-status Report
  • [Presentation] Relaxed NewtonSLRA for Approximate GCD2021

    • Author(s)
      Kosaku Nagasaka
    • Organizer
      The 23rd International Workshop on Computer Algebra in Scientific Computing, CASC 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Approximate GCD by relaxed NewtonSLRA algorithm2021

    • Author(s)
      Kosaku Nagasaka
    • Organizer
      The 46th International Symposium on Symbolic and Algebraic Computation (ISSAC 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] NewtonSLRAの緩和アルゴリズムとその効果2021

    • Author(s)
      長坂耕作
    • Organizer
      日本数式処理学会第30回大会
    • Related Report
      2021 Research-status Report
  • [Presentation] 近似GCDでのNewtonSLRAアルゴリズムの効果的な利用に向けて2020

    • Author(s)
      長坂耕作
    • Organizer
      研究集会 Computer Algebra - Theory and its Applications
    • Related Report
      2020 Research-status Report
  • [Presentation] 近似GCD関連問題におけるNewtonSLRAアルゴリズムの評価2020

    • Author(s)
      長坂耕作
    • Organizer
      日本数式処理学会第29回大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Approximate GCD by Bernstein Basis, and its Applications2020

    • Author(s)
      Nagasaka Kosaku
    • Organizer
      The 45th International Symposium on Symbolic and Algebraic Computation, ISSAC 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] バーンスタイン基底関数を用いた近似GCDの評価について2019

    • Author(s)
      長坂耕作
    • Organizer
      研究集会 Computer Algebra - Theory and its Applications
    • Related Report
      2019 Research-status Report
  • [Presentation] 近似GCDとその応用2019

    • Author(s)
      長坂耕作
    • Organizer
      長坂耕作 第28回 日本数式処理学会大会
    • Related Report
      2019 Research-status Report
  • [Remarks] LIBSNAP

    • URL

      https://wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi