• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on model misspecification for longitudinal data analysis

Research Project

Project/Area Number 19K11849
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Maruo Kazushi  筑波大学, 医学医療系, 准教授 (10777999)

Co-Investigator(Kenkyū-buntansha) 石井 亮太  筑波大学, 医学医療系, 助教 (40835633)
Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsモデル誤特定 / ロバストネス / 歪んだデータ / 欠測 / robust variance / model misspecification / Rパッケージ / ロバスト分散 / Box--Cox変換 / Rパッケージ解説 / 非ランダム下における推測 / ソフトウェア / バイアス / MMRM法 / 分布形状
Outline of Research at the Start

経時測定されたアウトカムにを対象としたランダム化臨床研究では,mixed models for repeated measures(MMRM)法が主解析として採用されることが多い.そこではデータに諸種の仮定がおかれ,統計モデルの誤特定が治療効果やその標準誤差のバイアス及び検出力の低下を招く恐れがある.本研究ではMMRM法について,仮定を緩めたより柔軟なモデルあるいはモデル誤特定を許容したロバストな推測法を開発する.本研究によって,治療効果のバイアス低減や検出力の向上が期待でき,効率的な治療法の開発に資すると考えられる.

Outline of Final Research Achievements

In the analysis of data from randomized controlled trials in which outcomes are measured longitudinally, we investigated the effects of misspecification of statistical models and developed robust models that are less sensitive to misspecification. Specifically, we (1) developed a program package for a model that fits well when the shape of the outcome distribution is skewed, and (2) evaluated the robustness of robust variance that allows model misspecification under missing data when estimating the precision of the treatment effect. These research results were published in a peer-reviewed international journal.

Academic Significance and Societal Importance of the Research Achievements

概要における①歪んだ経時データの解析方法のプログラムパッケージの開発について,この方法は当該の状況において新規治療の治療効果の検出力を高めることが示されており,有用な治療のより効率的な開発に寄与することが期待される.②ロバスト分散の有限欠測データにおけるロバストネスの評価について,ある程度どのような状況でも用いることができる分散推定量は解析者にとって非常に便利であり,この性質を明らかにしたことは統計ユーザーにとって有用であると考えられる.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (5 results)

All 2022 2021 2020 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (1 results) (of which Invited: 1 results) Remarks (1 results)

  • [Journal Article] Finite-sample performance of the robust variance estimator in the presence of missing data2022

    • Author(s)
      Ishii Ryota、Maruo Kazushi、Doi Masaaki、Gosho Masahiko
    • Journal Title

      Communications in Statistics - Simulation and Computation

      Volume: online first Issue: 6 Pages: 1-12

    • DOI

      10.1080/03610918.2022.2084107

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] bcmixed: A Package for Median Inference on Longitudinal Data with the Box?Cox Transformation2021

    • Author(s)
      Maruo Kazushi、Ishii Ryota、Yamaguchi Yusuke、Gosho Masahiko
    • Journal Title

      The R Journal

      Volume: 13 Issue: 2 Pages: 153-153

    • DOI

      10.32614/rj-2021-083

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A note on the bias of standard errors when orthogonality of mean and variance parameters is not satisfied in the mixed model for repeated measures analysis2020

    • Author(s)
      Maruo Kazushi、Ishii Ryota、Yamaguchi Yusuke、Doi Masaaki、Gosho Masahiko
    • Journal Title

      Statistics in Medicine

      Volume: 39 Issue: 9 Pages: 1264-1274

    • DOI

      10.1002/sim.8474

    • NAID

      120007132671

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 位置,尺度パラメータの直交性が成立しない場合における MMRM 法の標準誤差のバイアスについて2020

    • Author(s)
      丸尾和司
    • Organizer
      2020年度 統計関連学会連合大会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Remarks] R package bcmixed

    • URL

      https://cran.r-project.org/web/packages/bcmixed/index.html

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi