Project/Area Number |
19K11994
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60090:High performance computing-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
NAKADA HIDEMOTO 国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 主任研究員 (80357631)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 分散計算 / 並列計算 / 強化学習 / Julia / 機械学習 / 並列システム / 分散システム |
Outline of Research at the Start |
前半でプロトタイプの作成と実アプリケーションを用いた評価を一度行い、その評価に基づき後半で本実装を行うことを予定している。このために前半において、プロトタイプの実装と並行してアプリケーションの選定と開発を行う。これによって、実アプリケーションの要請に即したシステムの構築が可能になる。 研究代表者は、筑波大学の連携大学院教授を兼務しており、学生の指導を行っている。本研究提案の遂行には、研究代表者だけでなく、技術研修員として産総研に常駐している筑波大学の学生が当たる。平成31年度は4名の大学院学生(うち博士課程1名)が従事することを予定している。
|
Outline of Final Research Achievements |
In order to construct a framework for reinforcement learning in a parallel and distributed environment, we constructed a parallel and distributed system targeting a fast and highly functional language. We focused on the Julia language, which is rapidly expanding its use in machine learning, as a target language and implemented an actor mechanism suitable for implementing a reinforcement learning framework. Furthermore, considering the use on large-scale computer systems with fast networks, which are often used for large-scale machine learning, we optimized our framewrk for the fast network library and confirmed a significant performance improvement.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、並列分散強化学習をターゲットとして研究を進めたが、高性能計算機環境に適した並列分散実行環境の応用範囲は強化学習への適用にとどまらず、広く適用可能である。特にPythonを置き換える可能性のある言語として最近急速に注目を集めているJulia言語で実現したことには大きな社会的意義があると考える。また直感的に利用可能なActorをAPIとして採用することで、多くのユーザや応用分野に資することができると考える。
|