Project/Area Number |
19K12014
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61010:Perceptual information processing-related
|
Research Institution | Yamagata University |
Principal Investigator |
Kosaka Tetsuo 山形大学, 大学院理工学研究科, 教授 (50359569)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 感情認識 / 音声対話システム / 深層学習 / 言語情報 / 非言語情報 / 音声認識 / 音声感情認識 / 言語モデル適応 / 音響モデル適応 / ディープラーニング / 感情音声 / 音響モデル / 言語モデル |
Outline of Research at the Start |
人対機械の非タスク志向型対話において,感情の伝達は極めて重要になる.感情の伝達は視覚的情報や音声によって行なわれる.本研究では音声によって伝達される感情の推定に焦点を当て研究を行なう.音声による感情は主に,声の大きさ,高さ,時間長といった韻律に現れる.一方発話内容に直接的な感情表現が含まれる場合もある.前者は非言語情報,後者は言語情報と考えられるが,感情推定では両者を適切に融合して利用することが必要になる.本研究では,まず感情音声認識の高精度化を図り言語情報を正確に取得し,さらに言語情報と非言語情報を適切に融合することにより,高い精度の感情推定を実現することを目的とする.
|
Outline of Final Research Achievements |
Research on speech emotion recognition has made great progress by using deep learning. However, the methods using non-verbal information contained in speech were the mainstream in the past, and the study of the methods using linguistic information were insufficient. In this project, in order to use linguistic information, emotion recognition was performed using the texts obtained by speech recognition. In addition, the above recognition results were fused with the results by non-verbal information to realize highly accurate emotion recognition. Finally, the recognition rate of 82.75% was obtained by recognizing four emotion categories.
|
Academic Significance and Societal Importance of the Research Achievements |
音声を対象とした感情認識の研究において,これまでも言語情報と非言語情報を融合した感情認識の検討は様々行われてきたが,最大の問題点は音声認識の性能の低さであった.この性能が低いと正しい言語情報が利用できず,これが融合法のネックとなっていた.本研究ではその問題を克服し,高精度の感情認識を実現した. 音声による感情認識の精度が向上すれば,人間同士の対話に近い人対機械の対話が可能になり,ロボットの活用の幅が広がると考えられる.さらに本技術はコールセンターやメン タルヘルスケアなど音声を使う様々な分野で利用可能と考えられる.
|