• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Sample selection method for large scale datasets to improve robustness in recognition tasks

Research Project

Project/Area Number 19K12034
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Kenji Watanabe  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 研究員 (50571064)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords多変量解析 / 因子分解 / パターン認識 / 機械学習
Outline of Research at the Start

本研究では、汎化性の意味で識別性能等を向上させられる学習用大規模データセットの構築に資するため、学習用データセット構築をサンプル選択の問題と捉え、特徴空間上のサンプル分布に関する幾何的考察から新たな数理的手法を提案するとともに、この提案手法を用いて既存データセットの再構築を行うことで、所望の性能が得られることを実験的に示す。

Outline of Final Research Achievements

Machine learning methods have been applied to solve recognition tasks in many academic and commercial fields, and the methods are demanded for the improvement of robustness to solve the tasks. Overcoming this problem, training datasets should be re-constructed only using favorable samples which are subtracted to outliers.
In this research, we studied a matrix factorization which is applied in a sample selection framework for large scale and unknown dataset. Because we may be able to subtract the outliers from the datasets by measuring distances and/or simple criteria in the feature space for the input (original) samples and obtained samples from the factorization.

Academic Significance and Societal Importance of the Research Achievements

本研究で着目した因子分解手法は古典的な多変量解析手法の一つであり、昨今の隆盛を極める深層学習手法を検討対象とすることをあえて避けたのは、一定の理論的基準と確信を持って、汎化性能の向上に臨めるからである。これは、現在の学術・商用を問わず一定の性能が望めるという一点のみで、「なぜ、所望の性能を達成できたのか?」という理論的解析が困難な深層学習手法を軽々と利用する風潮に一石を投じる意味で学術的・社会的意義のある研究であるものと考える。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (1 results)

All 2022

All Presentation (1 results)

  • [Presentation] 時系列信号解析のための因子分解法の検討2022

    • Author(s)
      渡辺 顕司
    • Organizer
      福岡大学数理情報学セミナー
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi