• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Safe and Secure Data Management and Analytics Platform for Real-time Information Service in Disaster Scenarios

Research Project

Project/Area Number 19K12122
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionThe University of Aizu

Principal Investigator

王 軍波  会津大学, コンピュータ理工学部, 准教授 (40646882)

Co-Investigator(Kenkyū-buntansha) SU Chunhua  会津大学, コンピュータ理工学部, 上級准教授 (40716966)
Project Period (FY) 2019-04-01 – 2020-03-31
Project Status Discontinued (Fiscal Year 2019)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
KeywordsBig Data Analysis / Emergency Scenario / Security / Encypted Searching / Streaming Big Data / Encrypted Searching / Data Management / Privacy
Outline of Research at the Start

災害発生時においては時間の経過に伴って,人の移動や被災者からの救援要請など様々な状況が刻々と変化する.状況に関する人の移動と健康データをリアルタイムに分析し,変化する状況を迅速・的確に把握するのが非常重要な研究課題である.一方,近年健康などの個人情報を暗号したままで検索することが可能になるが,災害時の個人情報の適正的な管理,効率的な検索・分析が非常に挑戦的な研究課題である. 本研究は、二つの課題を同時に解決し、災害時安全・安心な解析基盤を提供する.

Outline of Annual Research Achievements

In the first year of the project, we have researched on big data analysis for emergency or disaster scenarios, security issues in the data processing procedure and so on. The main results include:
(1) Big data analysis for emergency scenarios in fog-computing environment: We study fog-computing supported spatial big data processing. We analyze the process for spatial clustering, which is a typical category for spatial data analysis, and propose an architecture to integrate data processing into fog computing. Through evaluation on real data collected during Kumamoto earthquake, we have determined that the proposed solution significantly outperforms other solutions.
(2)Security in the data processing procedure: Blackchain-based storage systems (BSS) are investigated recently, which can save sensitive information in secure and distributed way. In a BSS, miners are assumed to be deployed in a broad area, similar with local nodes in the edge computing environment, and they generate blocks after collecting enough data. In this year, we have studied the integration of Blockchain and Big Data processing and propose an algorithm to optimize the resource in the system.
(3)Encrypted searching: We design an efficient and safe K nearest neighbor (KNN) query scheme for uncertain data stored in semi-trusted cloud servers. We apply the modified homomorphic encryption, which requires two servers to interact and encrypt the uncertain data, and we use the authorized rank method to compute KNN.

Report

(1 results)
  • 2019 Annual Research Report
  • Research Products

    (1 results)

All 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results)

  • [Journal Article] Secure and Efficient ${K}$ Nearest Neighbor Query Over Encrypted Uncertain Data in Cloud-IoT Ecosystem2019

    • Author(s)
      Guo Cheng、Zhuang Ruhan、Su Chunhua、Liu Charles Zhechao、Choo Kim-Kwang Raymond
    • Journal Title

      IEEE Internet of Things Journal

      Volume: 6 Issue: 6 Pages: 9868-9879

    • DOI

      10.1109/jiot.2019.2932775

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed

URL: 

Published: 2019-04-18   Modified: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi