Project/Area Number |
19K12135
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61040:Soft computing-related
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
Sato Hiroyuki 電気通信大学, 大学院情報理工学研究科, 准教授 (60550978)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 最適化 / 進化計算 |
Outline of Research at the Start |
進化計算は,設計最適化における成功事例によって産業界からの注目を浴び,様々な類似する最適化問題への水平展開が期待されている.しかし,進化計算は,類似する最適化問題が複数あったとしても,それらをまとめて同時に最適化することはできず,それぞれを個別に最適化することしかできない.そのため,ある問題における改善を他の類似問題での改善に活かすことや,問題間の類似性を明らかにすることはできない.本研究では,複数の最適化問題を同時に最適化する進化計算の方法論を構築する.
|
Outline of Final Research Achievements |
We studied evolutionary computation methodology to optimize multiple objective functions simultaneously. For continuous problems with real value design variables and discrete problems with discrete design variables, binary 0/1 especially, we respectively proposed test optimization problems that could specify similarities among objective functions. For these problems, we proposed evolutionary optimization algorithms that estimate similarities among objective functions by solution distributions in the variable space and utilize them to enhance or suppress the cooperative search in crossover generating new solutions by recombining two existing solutions. Results showed that the proposed algorithms could estimate similarities among multiple objective functions and utilized them to improve the simultaneous optimization of multiple objective functions compared to conventional evolutionary algorithms.
|
Academic Significance and Societal Importance of the Research Achievements |
学術的には,異なる複数の目的関数の関係性が未知の状態から,最適化の過程で類似性を推定し,類似度が高い目的関数について,探索する解集合を共有する方法論として意義があると考えられる.社会的には,昨今,設計最適化などに進化計算が利用されるようになってきており,本研究によって,人々の多様なニーズに合わせたバリエーションが豊富な製品を同時に設計するシーンなどへの利用が促進される意義があると考えられる.
|