• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Rule-based Explainable Knowledge Acquisition by Multiobjective Evolutionary Machine Learning

Research Project

Project/Area Number 19K12159
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61040:Soft computing-related
Research InstitutionOsaka Metropolitan University (2022)
Osaka Prefecture University (2019-2021)

Principal Investigator

Nojima Yusuke  大阪公立大学, 大学院情報学研究科, 教授 (10382235)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywords知識獲得 / 進化型機械学習 / 解釈可能性
Outline of Research at the Start

本研究では,ルール集合に基づく知識獲得手法を中心に解釈可能性に関する議論を行う.利用者が解釈可能である知識を獲得可能な多目的進化型機械学習手法を3つの観点から開発する.1)様々な表現を用いた汎用的なルールに基づく識別器設計手法の開発.2)未知パターンの識別において,信頼性の低い出力は行わず,分からないという判定を明示的に行い,なぜ分からないのかを説明できる識別器の開発.3)深層学習の出力を特徴量とした新たな識別器設計手法の開発.

Outline of Final Research Achievements

In this study, we developed fuzzy rule-based classifier design methods considering accuracy, interpretability, reliability, and fairness. There is a trade-off between accuracy and interpretability. Accurate knowledge is difficult to interpret, while knowledge that is easy to interpret has low accuracy. In this study, we developed a method for improving the accuracy of fuzzy classifiers with high interpretability. We also developed a fuzzy classifier with a reject option that does not output low-confidence discriminant results. We also studied fuzzy classifier design that considers the fairness of the knowledge obtained from the data. The extensions to class imbalance data and multi-label data are discussed. The effectiveness of the above-developed methods is demonstrated through computational experiments.

Academic Significance and Societal Importance of the Research Achievements

現在の識別器設計に関する研究は,深層学習やアンサンブル識別器が主流であり,識別結果の解釈可能性の低さを改善する研究が数多く行われいる.一方,本研究は言語的解釈可能な識別器設計手法の高精度化であり,他の機械学習研究者や利用者に異なるアプローチを提供可能である.また,機械学習分野において近年注目されている精度,解釈可能性,信頼性,公平性という観点を,本研究で網羅的に取り扱っており,実データ解析手法として社会実装や,他の機械学習手法の改良や新たな手法の開発への一助となることが期待できる.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (24 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (16 results) (of which Int'l Joint Research: 6 results) Remarks (3 results)

  • [Int'l Joint Research] 南方科技大学(中国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] 南方科技大学(中国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] 南方科技大学(中国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Michigan-Style Fuzzy Genetics-Based Machine Learning for Class Imbalance Data2021

    • Author(s)
      西原 光洋, 増山 直輝, 能島 裕介, 石渕 久生
    • Journal Title

      Journal of Japan Society for Fuzzy Theory and Intelligent Informatics

      Volume: 33 Issue: 1 Pages: 525-530

    • DOI

      10.3156/jsoft.33.1_525

    • NAID

      130007986490

    • ISSN
      1347-7986, 1881-7203
    • Year and Date
      2021-02-15
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Extension of Multi-Objective Fuzzy Genetics-Based Machine Learning for Multi-Label Classification to Many-Objective Optimization2021

    • Author(s)
      面﨑 祐一, 増山 直輝, 能島 裕介, 石渕 久生
    • Journal Title

      Journal of Japan Society for Fuzzy Theory and Intelligent Informatics

      Volume: 33 Issue: 1 Pages: 531-536

    • DOI

      10.3156/jsoft.33.1_531

    • NAID

      130007986483

    • ISSN
      1347-7986, 1881-7203
    • Year and Date
      2021-02-15
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Error-reject tradeoff analysis on two-stage classifier design with a reject option2022

    • Author(s)
      E. M. Vernon, N. Masuyama, and Y. Nojima
    • Organizer
      2022 World Automation Congress
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Effects of accuracy-based single-objective optimization in multiobjective fuzzy genetics-based machine learning2022

    • Author(s)
      T. Konishi, N. Masuyama, and Y. Nojima
    • Organizer
      2022 Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 2段階棄却オプションを導入したファジィ識別器の精度と識別拒否のトレードオフ解析2022

    • Author(s)
      川野弘陽,Eric Vernon,増山直輝,能島裕介,石渕久生
    • Organizer
      第38回ファジィシステムシンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] 公平性を導入した多目的ファジィ遺伝的機械学習2022

    • Author(s)
      西浦弘樹,増山直輝,能島裕介,石渕久生
    • Organizer
      第38回ファジィシステムシンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] 精度に特化した最適化を最初に行う多目的ファジィ遺伝的機械学習2022

    • Author(s)
      小西豪,増山直輝,能島裕介,石渕久生
    • Organizer
      第38回ファジィシステムシンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] Evolutionary Multi-objective Multi-Tasking for Fuzzy Genetics-Based Machine Learning in Multi-Label Classification2022

    • Author(s)
      Y. Omozaki, N. Masuyama, Y. Nojima, and H. Ishibuchi
    • Organizer
      2022 IEEE International Conference on Fuzzy Systems
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Validation data accuracy as an additional objective in multiobjective fuzzy genetics-based machine learning2021

    • Author(s)
      S. A. F. Dilone, N. Masuyama, Y. Nojima, and H. Ishibuchi
    • Organizer
      22th International Symposium on Advanced Intelligent Systems (ISIS 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] マルチラベル多目的ファジィ遺伝的機械学習に対する進化型多目的マルチタスク最適化の適用2021

    • Author(s)
      面﨑祐一,増山直輝,能島裕介,石渕久生
    • Organizer
      第15回進化計算シンポジウム2021
    • Related Report
      2021 Research-status Report
  • [Presentation] 多目的ファジィ遺伝的機械学習におけるルール追加型ミシガン操作2021

    • Author(s)
      面崎祐一,増山直輝,能島裕介,石渕久生
    • Organizer
      インテリジェント・システム・シンポジウム2021
    • Related Report
      2021 Research-status Report
  • [Presentation] 複数の閾値を用いた棄却オプションの導入におけるファジィ識別器への影響調査2021

    • Author(s)
      川野弘陽,Eric Vernon,増山直輝,能島裕介,石渕久生
    • Organizer
      第37回ファジィシステムシンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] 属性ごとに異なる形状のメンバシップ関数を用いたファジィ識別器設計2021

    • Author(s)
      瀧川弘毅,増山直輝,能島裕介,石渕久生
    • Organizer
      第37回ファジィシステムシンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] Multiobjective fuzzy genetics-based machine learning for multi-label classification2020

    • Author(s)
      Y. Omozaki, N. Masuyama, Y. Nojima, and H. Ishibuchi
    • Organizer
      2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] 少数派クラスの識別性能を高めたMichigan型ファジィ遺伝的機械学習手法2020

    • Author(s)
      西原光洋,増山直輝,能島裕介,石渕久生
    • Organizer
      ファジィシステムシンポジウム2020
    • Related Report
      2020 Research-status Report
  • [Presentation] マルチラベル識別問題におけるファジィ遺伝的機械学習の多目的最適化と多数目的最適化の比較2020

    • Author(s)
      面崎祐一,増山直輝,能島裕介,石渕久生
    • Organizer
      ファジィシステムシンポジウム2020
    • Related Report
      2020 Research-status Report
  • [Presentation] Fuzzy Markup Languageを用いたファジィシステムの開発2019

    • Author(s)
      面崎祐一,増山直輝,能島裕介,石渕久生
    • Organizer
      ファジィシステムシンポジウム2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Development of a GUI tool for FML-based fuzzy system modeling2019

    • Author(s)
      Y. Omozaki, N. Masuyama, Y. Nojima, and H. Ishibuchi
    • Organizer
      20th International Symposium on Advanced Intelligent Systems and 2019 International Conference on Biometrics and Kansei Engineering
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Remarks] MoFGBML Source Code

    • URL

      https://github.com/CI-labo-OPU/MoFGBML

    • Related Report
      2022 Annual Research Report
  • [Remarks] MoFGBML_ML Source Code

    • URL

      https://github.com/CI-labo-OPU/MoFGBML_ML

    • Related Report
      2020 Research-status Report
  • [Remarks] Fuzzy Markup Language GUI

    • URL

      https://github.com/CI-labo-OPU/GUI_FMLtool

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi