Microscopic probabilistic information processing inferred from a macroscopic bias in sensory-motor interaction
Project/Area Number |
19K12165
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61040:Soft computing-related
|
Research Institution | Ritsumeikan University |
Principal Investigator |
Tsubo Yasuhiro 立命館大学, 情報理工学部, 准教授 (40384721)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 脳・神経 / 神経科学 / 情報工学 / 生体生命情報学 / 事象関連電位 / 確率型情報処理 / 低エネルギー / バイアス / 脳神経科学 / タッピング / 確率的情報処理 / 局所回路 |
Outline of Research at the Start |
本研究課題では,人間の行動レベルのバイアスを参考にして,神経回路レベルのモジュールのダイナミクスや入出力関係が満たすべき条件を,確率的情報処理の視点から記述することを目指します.手がかりとして周期的感覚刺激に対するタッピング運動における誤差に着目し,これまで機能として否定的に理解されてきた心理物理学的・認知科学的によく知られた機械的な情報処理と人間の行動レベルの情報処理のズレ(バイアス)を,新しい神経回路の機能を探るヒントとして,理論神経科学的な観点から調べ直すことにより神経回路における制約条件を提案することを目指します.
|
Outline of Final Research Achievements |
For realization of a sustainable society, it is necessary to elucidate new computational principles that mimic the brain, which is a representative energy-efficient information-processing device. In this research project, we focused on the bias of timing in tapping motion to periodic sensory stimuli, which is one of the typical differences between human information processing and machine learning, and investigated the requirements for constructing a stochastic neural circuit model that can reproduce the bias by measuring the relationship between statistical properties of the bias and brain activity as event-related potentials, and by examining the neural circuit structure in the relevant brain regions. We considered a new mathematical model that does not use optimization as a steppingstone to stochastic information processing.
|
Academic Significance and Societal Importance of the Research Achievements |
これまで脳を模倣した新しい計算原理の探索が様々なアプローチで行われてきたが,脳の低エネルギー性を生かすような確率型情報処理様式の解明には至らなかった.本研究課題では,確率型情報処理の足がかりとなる,最適化を用いない新しい数理モデルを考察し,その数理モデルの改良の評価方法としてのタッピング誤差分布,内部状態分布を与えたことで,今後の脳型確率情報処理様式の解明に向けた研究の前進に貢献した.
|
Report
(4 results)
Research Products
(10 results)