Project/Area Number |
19K12632
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 80040:Quantum beam science-related
|
Research Institution | Fukuoka University |
Principal Investigator |
Yoshida Koji 福岡大学, 理学部, 准教授 (00309890)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | ナノ流体 / 液体 / 中性子散乱 / X線散乱 / ダイナミクス / X線散乱 / X線非弾性散乱 |
Outline of Research at the Start |
液体に数体積%のナノ粒子を分散させたナノ流体は純液体に比べて熱伝導率が高いことが報告されており、その応用として熱交換機やエンジンのラジエータ、マイクロエレクトロニクス機器の性能の向上が期待されている。本研究ではナノ流体を構成する液体分子のダイナミクスを中性子・X線散乱により測定し、ナノ流体の熱伝導率や粘性率といったマクロな量を液体分子のミクロな運動から説明することを試みる。その結果、ナノ流体の熱伝導率を向上する機構が分子論的に明らかになり、高い熱伝導率ならびに低い粘性率を持つ高機能なナノ流体の設計指針を提案する。
|
Outline of Final Research Achievements |
Nanofluids, in which a few volume percent of nanoparticles are dispersed in various liquids, such as an ionic liquid, are attracting attention as a new heat transport medium. X-ray and neutron scattering, and NMR measurements were performed to clarify the cause of the high thermal conductivity of nanofluids in terms of the motion of the liquid that constitutes the nanofluid. By using different techniques, the dynamics of liquid molecules were observed over a wide time scale, and the translational and rotational motions of liquid molecules were revealed. The experimental results show that liquid molecules on the nanoparticle surface are slowed down in motion by their interaction with the nanoparticles. This information can verify the result of nanofluids by computer simulations. We can control the properties of nanofluids by molecular design in the future.
|
Academic Significance and Societal Importance of the Research Achievements |
熱エネルギーの輸送は熱マネージメントにおいて重要であり、エネルギーの有効利用のためには高効率な熱輸送媒体の開発は必要不可欠となっている。ナノ流体は純液体に比べて熱伝導率が高いことが報告されており、新しい熱輸送媒体として期待されている。本研究では、ナノ流体を構成する液体のダイナミクスを幅広い時間スケールで観測した。その結果、ナノ粒子表面での液体分子はナノ粒子との相互作用で運動が遅くなっていることが明らかになった。分子間相互作用の観点から液体の構造や運動を調べることで、ナノ流体の物性の発現原理を明らかにし、物性の制御可能性を示した。
|