• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of the global inference theory in high-dimensional macroeconometrics

Research Project

Project/Area Number 19K13665
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionHitotsubashi University (2022-2023)
Tohoku University (2019-2021)

Principal Investigator

UEMATSU Yoshimasa  一橋大学, 大学院ソーシャル・データサイエンス研究科, 准教授 (40835279)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywordsファクターモデル / ベクトル自己回帰モデル / 高次元統計学 / 偽発見率 / スパース性 / 高次元データ / 分散共分散行列 / ポートフォリオ選択 / 検出力 / ベクトル自己回帰 / バイアス修正 / ノックオフ / 統計的推測 / FDRコントロール / 高次元時系列 / ファクター
Outline of Research at the Start

高次元統計的推測の方法論は大きく二つに分けられる.一つは,サンプル分割に基づく「局所的推測」である.もう一つは,ワンステップで全体の推測をする「大域的推測」である.前者はサンプルの有効利用の観点からロスが生じるため,サンプルの限られる経済分析ではうまく機能しない場合も多い.一方で後者はすべてのサンプルを効率的に使えるが,直接高次元モデルを扱うため難しい.現状では,大域的推測に関する方法論やその理論は多くの部分が発展途上にある.そこで本研究では,近年提案された「ノックオフ法」に注目し,高次元マクロ計量モデルにおける大域的推測の方法論とその理論の確立を目指す.

Outline of Final Research Achievements

During the period of this research project, we primarily conducted studies related to large-scale factor models and vector autoregressive models. The research outcomes obtained are as follows: (1) We proposed a weak factor model induced by sparsity, which had not been considered before, and its efficient estimation method. (2) We proposed a statistical inference method to verify the sparsity. (3) We proposed a statistical inference method to detect Granger causality networks in large-scale vector autoregressive models.

Academic Significance and Societal Importance of the Research Achievements

上記(1),(2)の学術的意義は,より実データに沿った弱いファクターモデルの理論を発展させた点にある.これにより,例えばより正確な経済予測が可能になる.こうした成果は2つの論文にまとめられ,共にJournal of Business & Economic Statisticsに掲載された.上記3の学術的意義は,大規模時系列に潜む新たな知見の発見につながるネットワーク関係を安定的に検出できる点にある.この成果は海外専門誌からの改訂要求を受けて改訂し再投稿中である.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (26 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (6 results) Journal Article (6 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (12 results) (of which Int'l Joint Research: 8 results,  Invited: 8 results) Remarks (2 results)

  • [Int'l Joint Research] ヨーク大学(英国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] ヨーク大学(英国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] ヨーク大学(英国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] ヨーク大学(英国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] 南カリフォルニア大学/コネチカット大学(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] 北京大学(中国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Estimation of large covariance matrices with mixed factor structures2023

    • Author(s)
      Runyu Dai, Yoshimasa Uematsu, Yasumasa Matsuda
    • Journal Title

      The Econometrics Journal

      Volume: 27 Issue: 1 Pages: 62-83

    • DOI

      10.1093/ectj/utad018

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Estimation of Sparsity-Induced Weak Factor Models2022

    • Author(s)
      Uematsu Yoshimasa、Yamagata Takashi
    • Journal Title

      Journal of Business & Economic Statistics

      Volume: Forthcoming Issue: 1 Pages: 1-15

    • DOI

      10.1080/07350015.2021.2008405

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Inference in Sparsity-Induced Weak Factor Models2021

    • Author(s)
      Uematsu Yoshimasa、Yamagata Takashi
    • Journal Title

      Journal of Business & Economic Statistics

      Volume: Forthcoming Issue: 1 Pages: 1-14

    • DOI

      10.1080/07350015.2021.2003203

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] High‐dimensional macroeconomic forecasting and variable selection via penalized regression2019

    • Author(s)
      Uematsu Yoshimasa and Tanaka Shinya
    • Journal Title

      The Econometrics Journal

      Volume: 22 Issue: 1 Pages: 34-56

    • DOI

      10.1111/ectj.12117

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] SOFAR: large-scale association network learning2019

    • Author(s)
      Yoshimasa Uematsu, Yingying Fan, Kun Chen, Jinchi Lv, Wei Lin
    • Journal Title

      IEEE Transactions on Information Theory

      Volume: 65 Issue: 8 Pages: 4924-4939

    • DOI

      10.1109/tit.2019.2909889

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] IPAD: stable interpretable forecasting with knockoffs inference2019

    • Author(s)
      Yingying Fan, Jinchi Lv, Mahrad Sharifvaghefi, Yoshimasa Uematsu
    • Journal Title

      Journal of the American Statistical Association

      Volume: - Issue: 532 Pages: 1822-1834

    • DOI

      10.1080/01621459.2019.1654878

    • NAID

      120006557977

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Revisiting asymptotic theory for principal component estimators of approximate factor models2023

    • Author(s)
      Yoshimasa Uematsu
    • Organizer
      16th CMStatistics 2023, Berlin, Germany
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] High-dimensional robust inference via the debiased rank lasso2022

    • Author(s)
      Yoshimasa Uematsu
    • Organizer
      5th International Conference on Econometrics and Statistics (EcoSta 2022)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] High-dimensional asymptotics for single-index models via approximate message passing2022

    • Author(s)
      Yoshimasa Uematsu
    • Organizer
      15th CMStatistics 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元データにおける統計的推測とその高次元ベクトル自己回帰への応用2021

    • Author(s)
      植松良公
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On weak factor models2021

    • Author(s)
      植松良公
    • Organizer
      関西計量経済学研究会
    • Related Report
      2021 Research-status Report
  • [Presentation] Robust False Discovery Rate Control via Debiased Rank Lasso2021

    • Author(s)
      植松良公
    • Organizer
      Applications of Data Science in Social Science
    • Related Report
      2021 Research-status Report
  • [Presentation] On weak factor models2021

    • Author(s)
      植松良公
    • Organizer
      日本統計学会春季集会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Inference in weak factor models2020

    • Author(s)
      Yoshimasa Uematsu
    • Organizer
      Econometric Society World Congress 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Estimation of weak factor models2019

    • Author(s)
      Yoshimasa Uematsu
    • Organizer
      39th International Symposium on Forecasting
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Large-dimensional vector autoregression2019

    • Author(s)
      Yoshimasa Uematsu
    • Organizer
      2019 UEA-Tohoku Joint Workshop
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] IPAD: stable interpretable forecasting with knockoffs inference2019

    • Author(s)
      Yoshimasa Uematsu
    • Organizer
      11th CSA-KSS-JSS Joint International Session
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] IPAD: stable interpretable forecasting with knockoffs inference2019

    • Author(s)
      Yoshimasa Uematsu
    • Organizer
      11th ICSA International Conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks]

    • URL

      https://sites.google.com/site/uematsu0911/

    • Related Report
      2023 Annual Research Report
  • [Remarks]

    • URL

      https://sites.google.com/site/uematsu0911/

    • Related Report
      2022 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi