• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Statistical analysis of high-dimensional high-frequency data

Research Project

Project/Area Number 19K13668
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionThe University of Tokyo

Principal Investigator

Koike Yuta  東京大学, 大学院数理科学研究科, 准教授 (80745290)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords高頻度データ / 高次元共分散推定 / 多重検定 / ファクターモデル / ジャンプ / 行列集中不等式 / 高次元中心極限定理 / Cramer型の相対誤差評価 / Steinの方法 / graphical Lasso / 高次元データ / ネットワーク解析 / Malliavin解析 / スマートベータ / 共分散行列推定
Outline of Research at the Start

本研究では、非常に多数の銘柄を含むような大規模金融データから、その共分散行列および精度行列を推定するための統計理論の開発を目指す。大規模金融データの共分散行列や精度行列は、どの銘柄にどの程度投資をするかという資産運用戦略を構築する上で重要な役割を果たす統計量である。本研究では、特に金融市場の短期間の変動に対応するために、1日内の取引のデータのような高頻度データに着目する。

Outline of Final Research Achievements

This study has investigated statistical inference methods for the correlation structure of a large number of financial assets from their high-dimensional high-frequency data. Specifically, I have obtained the following results:
(1) I have proposed a method to estimate the precision matrix of a large number of assets from their high-dimensional high-frequency data. Besides, I have developed a method to approximately compute the distribution of the estimation error. (2) I have developed a theory to systematically estimate the relative errors of normal approximations for various statistics. This serves as justifying the validity of some multiple testing procedures. (3) I have proposed a method to estimate the number of relevant factors from high-frequency data.

Academic Significance and Societal Importance of the Research Achievements

高次元高頻度データの統計学に関するこれまでの理論的研究は点推定が主流であり、特に推定量の一致性や収束レートに関するものがほとんどであった。すなわち、データ数を多くするにつれて推定誤差が0に近づいていくことは示されてきたが、具体的に推定誤差がどの程度の大きさか見積もる研究はこれまでほとんどなされてこなかった。本研究では、高次元高頻度データの相関構造に対するいくつかの推定量に対して推定誤差の確率分布の近似手法を与え、かつその理論的正当性をある程度一般的な枠組みで示したという点で意義がある。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (45 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (12 results) (of which Int'l Joint Research: 9 results,  Peer Reviewed: 12 results,  Open Access: 11 results) Presentation (29 results) (of which Int'l Joint Research: 14 results,  Invited: 19 results)

  • [Int'l Joint Research] MIT/UCLA(米国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] CUHK(中国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] 香港中文大学(中国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] 香港中文大学(中国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Sharp high-dimensional central limit theorems for log-concave distributions2024

    • Author(s)
      Xiao Fang, Yuta Koike
    • Journal Title

      Annales de l'Institut Henri Poincare, Probabilites et Statistiques

      Volume: 印刷中

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Large-dimensional central limit theorem with fourth-moment error bounds on convex sets and balls2024

    • Author(s)
      Fang Xiao、Koike Yuta
    • Journal Title

      The Annals of Applied Probability

      Volume: 34 Issue: 2 Pages: 2065-2106

    • DOI

      10.1214/23-aap2014

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] From p-Wasserstein bounds to moderate deviations2023

    • Author(s)
      Fang Xiao、Koike Yuta
    • Journal Title

      Electronic Journal of Probability

      Volume: 28 Issue: none Pages: 1-52

    • DOI

      10.1214/23-ejp976

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] High-Dimensional Central Limit Theorems for Homogeneous Sums2023

    • Author(s)
      Koike Yuta
    • Journal Title

      Journal of Theoretical Probability

      Volume: 36 Issue: 1 Pages: 1-45

    • DOI

      10.1007/s10959-022-01156-2

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] High-Dimensional Data Bootstrap2023

    • Author(s)
      Chernozhukov Victor、Chetverikov Denis、Kato Kengo、Koike Yuta
    • Journal Title

      Annual Review of Statistics and Its Application

      Volume: 10 Issue: 1 Pages: 427-449

    • DOI

      10.1146/annurev-statistics-040120-022239

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Improved central limit theorem and bootstrap approximations in high dimensions2022

    • Author(s)
      Chernozhuokov Victor、Chetverikov Denis、Kato Kengo、Koike Yuta
    • Journal Title

      The Annals of Statistics

      Volume: 50 Issue: 5 Pages: 2562-2586

    • DOI

      10.1214/22-aos2193

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] New error bounds in multivariate normal approximations via exchangeable pairs with applications to Wishart matrices and fourth moment theorems2022

    • Author(s)
      Xiao Fang,Yuta Koike
    • Journal Title

      The Annals of Applied Probability

      Volume: 32 Issue: 1 Pages: 602-631

    • DOI

      10.1214/21-aap1690

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Inference for time-varying lead-lag relationships from ultra-high-frequency data2021

    • Author(s)
      Yuta Koike
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 印刷中 Issue: 1 Pages: 643-696

    • DOI

      10.1007/s42081-021-00106-2

    • NAID

      210000166878

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] High-dimensional central limit theorems by Stein’s method2021

    • Author(s)
      Fang Xiao、Koike Yuta
    • Journal Title

      The Annals of Applied Probability

      Volume: 31 Issue: 4 Pages: 1660-1686

    • DOI

      10.1214/20-aap1629

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] High-dimensional central limit theorems by Stein's method2021

    • Author(s)
      Xiao Fang, Yuta Koike
    • Journal Title

      Annals of Applied Probability

      Volume: 印刷中

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Notes on the dimension dependence in high-dimensional central limit theorems for hyperrectangles2020

    • Author(s)
      Koike Yuta
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 4 Issue: 1 Pages: 257-297

    • DOI

      10.1007/s42081-020-00096-7

    • NAID

      210000171390

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] De-biased graphical Lasso for high-frequency data2020

    • Author(s)
      Yuta Koike
    • Journal Title

      Entropy

      Volume: 22 Issue: 4 Pages: 456-456

    • DOI

      10.3390/e22040456

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Estimation of the number of relevant factors from high-frequency data2024

    • Author(s)
      小池祐太
    • Organizer
      2023年度関西計量経済学研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Estimation of the number of relevant factors from high-frequency data2024

    • Author(s)
      Yuta Koike
    • Organizer
      Stochastic Analysis and Statistics 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] From p-Wasserstein bounds to moderate deviations2023

    • Author(s)
      Yuta Koike
    • Organizer
      43rd Conference on Stochastic Processes and their Applications (SPA 2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] アマゾンウェブサービスとDaily TAQデー タ2023

    • Author(s)
      小池祐太
    • Organizer
      探索的ビッグデータ解析と再現可能研究 (WS-EBDA-RR-2023)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Estimation of the number of relevant factors from high-frequency data2023

    • Author(s)
      小池祐太
    • Organizer
      データサイエンスにおける統計的理論・方法論の新展開
    • Related Report
      2023 Annual Research Report
  • [Presentation] Estimation of the number of relevant factors from high-frequency data2023

    • Author(s)
      Yuta Koike
    • Organizer
      16th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 対数凹な独立同分布確率ベクトルの和に対する高次元中心極限定理2023

    • Author(s)
      小池祐太
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] Asymptotic mixed normality of realized covariance in high-dimensions2022

    • Author(s)
      Yuta Koike
    • Organizer
      The 5th International Conference on Econometrics and Statistics (EcoSta 2022)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元中心極限定理の誤差評価に関する最近の進展2022

    • Author(s)
      小池祐太
    • Organizer
      大阪大学確率論セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 金融高頻度データにおける先行遅行関係2022

    • Author(s)
      小池祐太
    • Organizer
      統計数理研究所 リスク解析戦略研究センターシンポジウム
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] ティックデータのフィルタリング: Daily TAQ データを例にして2022

    • Author(s)
      小池祐太
    • Organizer
      探索的ビッグデータ解析と再現可能研究 (WS-EBDA-RR-2022)
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Central limit theorems in high-dimensions: Recent developments2022

    • Author(s)
      Yuta Koike
    • Organizer
      Risk and Statistics, 3rd Tohoku-ISM-UUlm Joint Workshop
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元データに対する正規近似理論2022

    • Author(s)
      小池祐太
    • Organizer
      第25回情報論的学習理論ワークショップ(IBIS2022)
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Did the introduction of ETF Market Making Incentive Scheme affect lead-lag relationships in the Tokyo Stock Exchange?2022

    • Author(s)
      Yuta Koike
    • Organizer
      33rd (EC)^2 Conference
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] High-dimensional CLT with general covariance structure2022

    • Author(s)
      Yuta Koike
    • Organizer
      15th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2022)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元データに対する正規近似: 最近の進展2022

    • Author(s)
      小池祐太
    • Organizer
      多様な高次元モデルの理論と方法論: 最前線の動向
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 実現共分散行列の高次元漸近混合正規性2022

    • Author(s)
      小池祐太
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] Drift estimation for a multi-dimensional diffusion process using deep neural networks2021

    • Author(s)
      Akihiro Oga, Yuta Koike
    • Organizer
      The 4th International Conference on Econometrics and Statistics (EcoSta 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] De-biased graphical Lasso for high-frequency data2021

    • Author(s)
      小池祐太
    • Organizer
      統計数理研究所 リスク解析戦略研究センター 第 8 回金融シンポジウム「金融が直面する新環境への対応と方法論 III」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Gaussian approximation for high-dimensional data: Recent progress2021

    • Author(s)
      Yuta Koike
    • Organizer
      Maths & Stats Colloquium Series
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Central limit theorems in high-dimensions: Recent developments2021

    • Author(s)
      Yuta Koike
    • Organizer
      15th International Conference on Computational and Financial Econometrics (CFE 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Gaussian approximation to high-dimensional Wishart matrices under a moment assumption2021

    • Author(s)
      Xiao Fang, Yuta Koike
    • Organizer
      日本数学会2021年度秋季総合分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] Homogeneous sumに対する高次元中心極限定理2021

    • Author(s)
      小池祐太
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元中心極限定理の最近の展開2020

    • Author(s)
      小池祐太
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Asymptotic mixed normality of realized covariance in high-dimensions2019

    • Author(s)
      Yuta Koike
    • Organizer
      The 3rd KAFE-JAFEE International Conference on Financial Engineering
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元共分散行列推定に基づく最小分散ポートフォリオのパフォーマンス比較2019

    • Author(s)
      小池祐太
    • Organizer
      科研費 計量ファイナンス研究集会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Asymptotic mixed normality of realized covariance in high-dimensions2019

    • Author(s)
      Yuta Koike
    • Organizer
      The 62nd ISI World Statistics Congress 2019 (ISI-WSC 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] De-biased graphical Lasso for high-frequency data2019

    • Author(s)
      Yuta Koike
    • Organizer
      CMStatistics 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic mixed normality of realized covariance in high-dimensions2019

    • Author(s)
      Yuta Koike
    • Organizer
      The 11th ICSA International Conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi