• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An innovative approach for unifying causal inference, missing data analysis, and copula models

Research Project

Project/Area Number 19K13670
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionKobe University

Principal Investigator

MOTEGI KAIJI  神戸大学, 経済学研究科, 准教授 (60742848)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords因果推論 / 欠損データ / コピュラ / カリブレーション / 回帰分析 / 欠損データ分析 / トリートメント効果 / コピュラモデル / Missing at Random (MAR) / カリブレーション推定
Outline of Research at the Start

本研究の目的は、因果推論、欠損データ分析、コピュラモデルの三者を結びつけることである。これら3つの研究分野を融合させるのは、本研究独自の取り組みである。まず、本研究は一般性の高いモデルの下で因果推論の精度向上を達成する。さらに、提案した因果推論の手法を応用し、欠損データに対するコピュラモデルの推定を可能にする。因果推論と欠損データ分析の間の理論的な類似性を利用すれば、両者を自然な形で結びつけることができる。欠損データに対するコピュラモデルの推定を実現させることにより、経済予測の精度が高まる。

Outline of Final Research Achievements

In this research project, I have successfully unified causal inference, missing data analysis, and copula models by adopting a novel approach called calibration. Each of causal inference, missing data analysis, and copula models has been well studied in statistics and econometrics, but this project is the first one that unifies these three topics. I have established copula-based regression with data missing at random and causal inference for general treatment types and treatment effects.

Academic Significance and Societal Importance of the Research Achievements

社会科学系の統計分析では、様々な理由により頻繁にデータの欠損が発生する。したがって、欠損データに対する新たな統計分析の手法を確立した本研究は、学術面・実務面で重要な貢献を果たしたと言える。実際、ドイツ製造業の個別企業データやアメリカ大統領選挙の広告・献金データに対して提案の分析手法を応用した結果、従来の分析手法では得られない新たな知見を得ることに成功した。これらは企業の経営戦略や政党の選挙戦略の進化に資する重要な知見である。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (13 results)

All 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (3 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Remarks (3 results)

  • [Int'l Joint Research] CUHK, Shenzhen/Renmin University of China(中国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Cambridge(英国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] 中国人民大学(中国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Renmin University of China(中国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] A unified framework for efficient estimation of general treatment models2021

    • Author(s)
      Chunrong Ai, Oliver Linton, Kaiji Motegi, and Zheng Zhang
    • Journal Title

      Quantitative Economics

      Volume: 12 Pages: 779-816

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Copula-based regression models with data missing at random2020

    • Author(s)
      Shigeyuki Hamori, Kaiji Motegi, and Zheng Zhang
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 180 Pages: 104654-104654

    • DOI

      10.1016/j.jmva.2020.104654

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Calibration estimation of semiparametric copula models with data missing at random2019

    • Author(s)
      Hamori Shigeyuki、Motegi Kaiji、Zhang Zheng
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 173 Pages: 85-109

    • DOI

      10.1016/j.jmva.2019.02.003

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Copula-based regression models with responses missing at random: A unified approach2019

    • Author(s)
      Kaiji Motegi
    • Organizer
      2019 Japanese Joint Statistical Meeting
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Copula-based regression models with data missing at random: A unified approach2019

    • Author(s)
      Kaiji Motegi
    • Organizer
      Departmental seminar, Department of Economics, University of Essex
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Copula-based regression models with data missing at random: A unified approach2019

    • Author(s)
      茂木快治
    • Organizer
      慶應義塾大学経済研究所「計量経済学ワークショップ」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] 研究代表者(茂木快治)の個人ウェブサイト

    • URL

      http://www2.kobe-u.ac.jp/~motegi/

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] 研究代表者の所属機関の教員紹介ページ

    • URL

      http://www.econ.kobe-u.ac.jp/faculty/fields/econometrics/motegi.html

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] Prof. Zheng Zhang's faculty directory

    • URL

      http://isbd.ruc.edu.cn/sztd/c1ae8a8f547a4aa6a099448b2054222f.htm

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi