• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

可換環論を用いて双有理幾何学に現れる特異点の不変量の研究

Research Project

Project/Area Number 19K14496
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionTokyo Denki University (2023)
Okayama University (2022)
Nihon University (2020-2021)
The University of Tokyo (2019)

Principal Investigator

柴田 康介  東京電機大学, 工学部, 助教 (60819671)

Project Period (FY) 2019-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords特異点 / 代数幾何学 / 双有理幾何学 / 弧空間 / 極小対数的食い違い係数 / 商特異点 / PIA予想 / LSC予想 / hyperquotient特異点 / 最小対数的食い違い係数 / 下半連続性予想 / アークスペース / ジェットスキーム / 可換環論
Outline of Research at the Start

双有理幾何学の特異点を研究する際には双有理幾何学の特異点の不変量である最小対数的食い違い係数について研究することが重要となる。しかし、最小対数的食い違い係数を計算する例外因子の情報について適切な解析手法がないため、調べることが困難となってきた。本研究では双有理幾何学の特異点を可換環論の特異点の不変量と双有理幾何学の特異点の不変量の関係を調べることを目標とする。まずは、完全交叉の場合について可換環論の特異点の不変量と双有理幾何学の特異点の不変量の関係について調べ、そこから一般の場合について研究し、最後に可換環論の不変量の情報から最小対数的食い違い係数を計算する例外因子の情報を得る手段を研究する。

Outline of Annual Research Achievements

昨年度までは商特異点の中で不変な元で定義される特異点を弧空間を使い極小対数的食い違い係数の研究をしてきた。今年度は半不変である元で定義される完全交叉特異点を群の作用による商で定義される特異点に対して、これまで示してきた結果を一般化するために研究をした。特に商特異点の中で不変な元で定義される特異点が対数的端末特異点の場合に示せていたPIA予想と下半連続性予想を示すことを目標にした。
今回研究をしたこの特異点は商特異点の中で不変な元で定義される特異点よりも広いクラスの特異点であり、特に3次元の端末特異点を全て含む特異点であることが分かっている。この研究の結果、この特異点に対して、対数的端末特異点である場合については、PIA予想と下半連続性予想を示すことができた。これらの研究結果は論文としてまとめ、ジャーナルに投稿中である。
さらにPIA予想の反例になる特異点を発見した。今までの研究では商特異点の中で不変な元で定義される特異点について弧空間を研究をしているときに、対数的標準特異点の場合に弧空間が対数的端末特異点の場合には起こらない現象が起きるためPIA予想の証明ができていなかった。そこで今年度はこの現象が起こる例を多く作り調べたところ極小対数的食い違い係数を弧空間を使い計算をする際に、対数的端末特異点では起こらないことが起きる例を見つけることができた。そして、その例がPIA予想の反例になっていることが分かった。さらにこの反例を使いfamilyの場合の下半連続性予想は成り立たない例を作ることができた。この結果をまとめ論文に書いている状況である。
これらの研究は中村勇哉氏との共同研究である。

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

これまでの行っていた研究結果を、さらに広い特異点クラスに一般化することができたことと、さらに成り立つと思われていたPIA予想について、対数的標準特異点の場合に反例を見つけることができたため。

Strategy for Future Research Activity

PIA予想の反例の発見には、対数的端末特異点の場合には起こらないが、対数的標準特異点の場合に起こる弧空間の現象を調べていることがきっかけであった。
この現象についてさらに詳しく調べることで対数的標準特異点の場合のLSC予想について研究をしたい。

Report

(5 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (19 results)

All 2023 2022 2021 2020 2019

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (15 results) (of which Int'l Joint Research: 4 results,  Invited: 14 results)

  • [Journal Article] Inversion of adjunction for quotient singularities2022

    • Author(s)
      Nakamura Yusuke、Shibata Kohsuke
    • Journal Title

      Algebraic Geometry

      Volume: 9 Pages: 214-251

    • DOI

      10.14231/ag-2022-007

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bounds of the multiplicity of abelian quotient complete intersection singularities2021

    • Author(s)
      Shibata Kohsuke
    • Journal Title

      manuscripta mathematica

      Volume: 166 Issue: 3-4 Pages: 535-560

    • DOI

      10.1007/s00229-020-01261-8

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Characterization of two-dimensional semi-log canonical hypersurfaces in arbitrary characteristic2021

    • Author(s)
      Shibata Kohsuke
    • Journal Title

      European Journal of Mathematics

      Volume: 7 Issue: 3 Pages: 931-951

    • DOI

      10.1007/s40879-021-00484-7

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Minimal log discrepancies in positive characteristic2021

    • Author(s)
      Shibata Kohsuke
    • Journal Title

      Communications in Algebra

      Volume: 50 Issue: 2 Pages: 571-582

    • DOI

      10.1080/00927872.2021.1962898

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Minimal log discrepnacies for quotient singularities2023

    • Author(s)
      柴田康介
    • Organizer
      東大代数幾何学セミナー
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Inversion of adjunction for quotient singularities2023

    • Author(s)
      柴田康介
    • Organizer
      International workshop on Birational Geometry
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 双有理幾何学の特異点について2023

    • Author(s)
      柴田康介
    • Organizer
      東京電機大学数学講演会
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] 双有理幾何学の特異点について2022

    • Author(s)
      柴田康介
    • Organizer
      談話会(岡山大学)
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Inversion of adjunction for quotient singularities2022

    • Author(s)
      柴田康介
    • Organizer
      城崎代数幾何学シンポジウム2022
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Gorenstein indices of invariant rings2022

    • Author(s)
      柴田康介
    • Organizer
      第43回可換環論シンポジウム
    • Related Report
      2022 Research-status Report
  • [Presentation] Bounds of the multiplicity of abelian quotient complete intersection singularities2022

    • Author(s)
      柴田康介
    • Organizer
      Virtual Commutative Algebra Seminars
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Shokurov's index conjecture for quotient singularities2022

    • Author(s)
      柴田康介
    • Organizer
      Mini workshop of singularities
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Characterization of two dimensional semi-log canonical hypersurfaces in arbitrary characteristic2020

    • Author(s)
      柴田康介
    • Organizer
      特異点月曜セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Minimal log discrepancies in positive characteristic2020

    • Author(s)
      柴田康介
    • Organizer
      OIST 2020 workshop“Quantum Math, Singularities and Applications ”
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The core of a module and the adjoint of an ideal over a two dimensional regular local ring2019

    • Author(s)
      柴田康介
    • Organizer
      特異点月曜セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] The core of a module and the adjoint of an ideal over a two dimensional regular local ring2019

    • Author(s)
      柴田康介
    • Organizer
      第32回可換環論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] The core of a module and the adjoint of an ideal over a two dimensional regular local ring2019

    • Author(s)
      柴田康介
    • Organizer
      東京可換環論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Inversion of adjunction for non-degenerate hypersufaces in a toric variety2019

    • Author(s)
      柴田康介
    • Organizer
      Younger generations in Algebraic and Complex geometry VI
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Minimal log discrepancies in positive characteristic2019

    • Author(s)
      柴田康介
    • Organizer
      特異点月曜セミナー
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi