• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on fundamental group actions on derived categories of coherent sheaves and spaces of stability conditions

Research Project

Project/Area Number 19K14502
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyoto University

Principal Investigator

Hirano Yuki  京都大学, 理学研究科, 助教 (50804225)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsBridgeland安定性条件 / 連接層の導来圏 / 基本群の作用 / 擬対称表現 / 傾斜加群 / 素thick部分圏 / 導来因子化圏 / 同変傾斜対象 / Pfaffian多様体
Outline of Research at the Start

本研究では, 3 次元のフロップ収縮に付随するある種の三角圏上のBridgeland安定性条件の空間を, Wemyssおよび伊山--Wemyssにより構成された超平面配置を用いた具体的な記述を与えることを目指す. また, 代数的トーラスの擬対称表現 V のスタック的 GIT 商の連接層の導来圏を非可換代数的な立場から研究し, Vの弦的ケーラーモジュライ空間の基本群からの導来圏への作用が忠実であることを証明することを目指す.

Outline of Final Research Achievements

There are two main results of this research. One is on Bridgeland stability conditions. Spaces of Bridgeland Stability conditions on derived categories of coherent sheaves on algebraic varieties are important in the string theory. We describe the space of Bridgeland Stability conditions on certain triangulated categories associated to arbitrary 3-fold flopping contractions. As the other result, we show that the fundamental group actions, which are constructed by Halpern-Leistner and Sam, on the derived category of GIT quotient of certain representations of linear reductive groups correspond to compositions of equivalences induced by iterated Iyama--Wemyss mutations.

Academic Significance and Societal Importance of the Research Achievements

3次元フロップ収縮に付随する三角圏上の安定性条件の空間は, これまで技術的仮定を置いた場合でしか記述されていなかったが, 本研究では一般の場合に記述することができた. また, そのアプローチは, 伊山--Wemyssによって近年発展した非可換代数の表現論を用いたものであり, その理論の有用性を示す意味でも意義のある研究であったといえる. また, 擬対称表現に付随するGIT商の連接層の導来圏上の基本群作用の研究においても, 伊山--Wemyssの理論が有用であることを確かめることができた.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (7 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (4 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results)

  • [Int'l Joint Research] University of Glasgow(英国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Prime thick subcategories on elliptic curves2022

    • Author(s)
      Hirano Yuki、Ouchi Genki
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 318 Issue: 1 Pages: 69-88

    • DOI

      10.2140/pjm.2022.318.69

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Derived factorization categories of non‐Thom?Sebastiani‐type sums of potentials2022

    • Author(s)
      Hirano Yuki、Ouchi Genki
    • Journal Title

      Proceedings of the London Mathematical Society

      Volume: 126 Issue: 1 Pages: 1-75

    • DOI

      10.1112/plms.12488

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Presentation] Mutations of noncommutative crepant resolutions in GIT2022

    • Author(s)
      平野雄貴
    • Organizer
      Mirror Symmetry and Related Topics, Kyoto 2022
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Prime thick subcategories on elliptic curves2021

    • Author(s)
      平野雄貴
    • Organizer
      Categorical and Analytic Invariants in Algebraic Geometry VIII
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Full strong exceptional collections for invertible polynomials of chain type2020

    • Author(s)
      平野雄貴
    • Organizer
      Mini workshop on derived categories and related topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stability conditions for 3-fold flops2019

    • Author(s)
      平野雄貴
    • Organizer
      Tilting Theory, Singularity Categories, & Noncommutative Resolutions
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi