• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of algebraic solutions of the differential equations determined by isomonodromic deformations

Research Project

Project/Area Number 19K14506
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionUniversity of Hyogo (2023)
Kobe University (2019-2022)

Principal Investigator

Komyo Arata  兵庫県立大学, 理学研究科, 准教授 (90760976)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsモノドロミー保存変形 / 接続のモジュライ理論 / ベクトル束のモジュライ空間 / 見かけの特異点 / 不確定特異点 / 曲面のHilbert概形 / 不確定ガルニエ系 / 代数解 / シンプレクティック形式 / モジュライ / 可積分系 / モジュライ空間 / 接続 / 不確定接続 / パンルヴェ方程式 / シンプレクティック構造 / ガルニエ系 / ハミルトニアン / パンルヴェVI型方程式 / 基本群の表現
Outline of Research at the Start

本研究では, パンルヴェVI型方程式やガルニエ系と呼ばれる微分方程式を扱う. これらの方程式は, 確定特異点をもつ射影直線上の2階線形常微分方程式のモノドロミー保存変形を記述する方程式である. これらの方程式のパラメータと初期値を特殊にとることにより, その初期値問題の解は代数的になることがある. これらの代数解は多くの数学的構造(例えば, フロベニウス多様体, 正多面体群, グロタンディークの子供の絵など)と関係し, 様々な方面から研究されてきた. 本研究の目的は, ガルニエ系の代数解を新たに見つけること, またそれぞれの代数解の背後にある幾何学的構造を調べることである.

Outline of Final Research Achievements

Algebraic solutions of the Garnier systems have been studied. The Garnier systems are non-linear differential equations determined by the isomonodromic deformations of some linear ODEs. First, generalization of Girand's algebraic solution was studied. Next algebraic solutions of irregular Garnier systems, which is corresponding to the isomonodromic deformations of some linear ODEs with irregular singularities. By the classification theorem due to Diarra--Loray, there's a list of irregular Garnier systems which have algebraic solutions. In this list, there was an irregular Garnier system whose algebraic solution was not found. To give that algebraic solution, the theory of apparent singularities was studied. As the result, that algebraic solution was found.

Academic Significance and Societal Importance of the Research Achievements

パンルヴェ方程式は19世紀最後の年に発見された非線型常微分方程式である. この方程式は数理物理への応用が見つかって以降, 様々な分野の多くの研究者によって研究されてきた. パンルヴェ方程式の特殊解を求めるという問題はパンルヴェ方程式の研究では基本的であり, これまでに多くの数学者・数理物理学者によって取り組まれた. 本研究ではパンルヴェ方程式の仲間であるガルニエ系についての特殊解について研究してきた. ガルニエ系はパンルヴェ方程式に比べまだわかっていないことが多く, 本研究はガルニエ系の特殊解の研究に新たな進展をもたらしたとともに, 得た特殊解を用いたガルニエ系の研究の展開が期待される.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (26 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (9 results) Journal Article (6 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (10 results) (of which Int'l Joint Research: 6 results,  Invited: 10 results) Remarks (1 results)

  • [Int'l Joint Research] Universite de Rennes (IRMAR)(フランス)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Alfred Renyi institute of Mathematics(ハンガリー)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Tata Institute of Fundamental Research(インド)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Universite de Rennes 1(フランス)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Tata Institute of Fundamental Research(インド)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Rennes 1(フランス)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Tata Institute of Fundamental Research(インド)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Universite de Rennes 1(フランス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Universite de Rennes 1(フランス)

    • Related Report
      2019 Research-status Report
  • [Journal Article] A nonclassical algebraic solution of a 3-variable irregular Garnier system2022

    • Author(s)
      Komyo Arata
    • Journal Title

      Funkcialaj Ekvacioj

      Volume: -

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification2022

    • Author(s)
      Komyo Arata、Loray Frank、Saito Masa-Hiko
    • Journal Title

      Advances in Mathematics

      Volume: 410 Pages: 108750-108750

    • DOI

      10.1016/j.aim.2022.108750

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Description of generalized isomonodromic deformations of rank two linear differential equations using apparent singularities2022

    • Author(s)
      Komyo Arata
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: -

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections2021

    • Author(s)
      KOMYO Arata
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the moduli spaces of framed logarithmic connections on a Riemann surface2021

    • Author(s)
      BISWAS Indranil, INABA Mchi-Aki, KOMYO Arata, SAITO, Masa-hiko
    • Journal Title

      Comptes Rendus Serie Mathematique

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A family of flat connections on the projective space having dihedral monodromy and algebraic Garnier solutions2020

    • Author(s)
      KOMYO Arata
    • Journal Title

      Annales de la Faculte des Sciences de Toulouse

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Canonical coordinates for moduli spaces of rank two irregular connections on curves2023

    • Author(s)
      光明 新
    • Organizer
      パンルヴェ方程式の幾何学とその周辺
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification2022

    • Author(s)
      Komyo Arata
    • Organizer
      Web-seminar on Painleve Equations and related topics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification2022

    • Author(s)
      光明 新
    • Organizer
      城崎代数幾何学シンポジウム 2022
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] A nonclassical algebraic solution of a 3-variable irregular Garnier system2022

    • Author(s)
      Komyo Arata
    • Organizer
      The 3rd Shot of The 13th MSJ-SI "Differential Geometry and Integrable Systems" (Short Communications)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification2022

    • Author(s)
      Arata Komyo
    • Organizer
      Algebraic Geometry and Integrable Systems 2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Description of generalized isomonodromic deformations of rank two linear differential equations using apparent singularities2021

    • Author(s)
      KOMYO Arata
    • Organizer
      Indo-Japan Web-Workshop on Vector Bundles and Related Topics
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Description of generalized isomonodromic deformations of rank two linear differential equations using apparent singularities2020

    • Author(s)
      KOMYO Arata
    • Organizer
      Kobe Seminar on Integrable Systems
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] A family of flat connections on the projective space having dihedral monodromy and algebraic Garnier solutions2019

    • Author(s)
      KOMYO Arata
    • Organizer
      Journee Paris-Rennes du GDR EFI
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections2019

    • Author(s)
      KOMYO Arata
    • Organizer
      Mini Workshop on Geometry of Moduli Spaces
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Dihedral monodromy を持つ射影空間上の平坦接続の族と Garnier 系の代数解2019

    • Author(s)
      光明 新
    • Organizer
      湯布院代数幾何学ワークショップ
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] Homepage of Arata Komyo

    • URL

      https://sites.google.com/site/aratakomyo1224/home

    • Related Report
      2020 Research-status Report 2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi