• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology

Research Project

Project/Area Number 19K14528
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionKyoto University

Principal Investigator

Yuasa Wataru  京都大学, 理学研究科, 特定助教 (80824961)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsスケイン関係式 / スケイン代数 / クラスター代数 / 色付きジョーンズ多項式 / 量子不変量 / 曲面のモジュライ空間 / 量子クラスター代数 / 量子トポロジー / 圏化 / 低次元トポロジー / 結び目
Outline of Research at the Start

結び目や 3 次元多様体の量子不変量は, 例えば単純リー代数の量子群の有限次元既約表現を用いることで統一的に構成できるがその計算は非常に難しい.
本研究では, リー代数 sl(N+1) から構成される量子不変量の計算を行う. その計算には, 量子群の表現を図式の線形和とスケイン関係式を用いて組み合わせ的に計算する線形スケイン理論を用いる. そして, これらの計算公式を量子不変量の計算, 写像類群の量子表現の計算, 量子モジュラー形式の恒等式の導出, トポロジカル量子計算などへ応用する. これらの応用は全て図式計算による量子群の表現に関する公式の導出が重要な鍵を握っている.

Outline of Final Research Achievements

We show the existence of tails of the sl(3) Jones polynomials colored by irreducible representations with the highest weight (n,0) for adequate links. For sp(4), we obtained an explicit formula of tails for (2,m)-torus links colored by irreducible representations of the highest weights (n,0) and (0,n).
In collaboration with Tsukasa Ishibashi, we showed that the clasped skein algebras of sl(3) and sp(4) can be embedded into the quantum cluster algebras of marked surfaces associated with sl(3) and sp(4).

Academic Significance and Societal Importance of the Research Achievements

高階の結び目の tail の明示式については、 sl(3) の場合にトーラス絡み目の tail が頂点作用素代数のある表現に関する指標と対応することが示された。そのため sp(4) において得られた tail が同様に頂点作用素代数の指標で得られる可能性がある。更に、量子クラスター代数との対応では例外型リー代数 g(2) に関しても同様の研究を進めており、これら rank 2 の場合の対応からさらに高階の対応についての研究の指標となる。また、クラスター代数はFock-Goncharovによる曲面の局所系のモジュライ空間の関数環に対応していることから、モジュライの研究への応用も見込まれる。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (34 results)

All 2024 2023 2022 2021 2020 2019 Other

All Journal Article (4 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (25 results) (of which Int'l Joint Research: 8 results,  Invited: 21 results) Remarks (5 results)

  • [Journal Article] The zero stability for the one-row colored $\mathfrak{sl}_3$-Jones polynomial2024

    • Author(s)
      Wataru Yuasa
    • Journal Title

      Algebra & Geometric Topology

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Skein and cluster algebras with coefficients for unpunctured surfaces2023

    • Author(s)
      Tsukasa Ishibashi, Kano Shunsuke and Wataru Yuasa
    • Journal Title

      arXiv preprint

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Journal Article] Skein and cluster algebras of unpunctured surfaces for ${\mathfrak{sl}}_3$2022

    • Author(s)
      Ishibashi Tsukasa, Yuasa Wataru
    • Journal Title

      Mathematische Zeitschrift

      Volume: 303 Issue: 3

    • DOI

      10.1007/s00209-023-03208-7

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Twist formulas for one-row colored $A_2$ webs and $\mathfrak {sl}_{3}$ tails of $(2, 2m)$-torus links2021

    • Author(s)
      Yuasa Wataru
    • Journal Title

      Acta Mathematica Vietnamica

      Volume: ー Issue: 2 Pages: 369-387

    • DOI

      10.1007/s40306-020-00397-9

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Skein and cluster algebras with coefficients for unpunctured surfaces2024

    • Author(s)
      Wataru Yuasa
    • Organizer
      Advances in Cluster Algebras 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Cluster and Skein algebras of unpunctured surfaces for $mathfrak{sp}_4$2023

    • Author(s)
      Wataru Yuasa
    • Organizer
      Skein Algebra and related topics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] State-clasp correspondence of skein algebras2023

    • Author(s)
      Wataru Yuasa
    • Organizer
      Geometry, Algebra and Physics Seminar at KIAS
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Cluster and skein algebras of marked surfaces without punctures for sp_42023

    • Author(s)
      湯淺亘
    • Organizer
      Mapping class groups and Quantum topology
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Cluster and skein algebras of marked surfaces without punctures for sp_42023

    • Author(s)
      湯淺亘
    • Organizer
      Advances in Cluster Algebras 2023
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Skein and cluster algebras of marked surfaces without punctures for sp_42022

    • Author(s)
      湯淺亘
    • Organizer
      大阪大学トポロジーセミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Skein and cluster algebras of marked surfaces without punctures for sp_42022

    • Author(s)
      湯淺亘
    • Organizer
      南大阪代数セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] State-clasp correpondence for skein algebras2022

    • Author(s)
      湯淺亘
    • Organizer
      Friday Seminar on Knot Theory
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] State-clasp correpondence for skein algebras2022

    • Author(s)
      湯淺亘
    • Organizer
      The 13th KOOK-TAPU Joint Seminar on Knots and Related Topics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 曲面のスケイン代数と量子クラスター代数2022

    • Author(s)
      湯淺亘
    • Organizer
      トポロジーシンポジウム2022
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Stated and marked skein algebras2022

    • Author(s)
      湯淺亘
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] Skein and cluster algebras of marked surfaces without punctures for sl_32021

    • Author(s)
      湯淺亘
    • Organizer
      広島大学 トポロジー・幾何セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Skein and cluster algebras of marked surfaces without punctures for sl_32021

    • Author(s)
      湯淺亘
    • Organizer
      拡大 KOOK セミナー 2021
    • Related Report
      2021 Research-status Report
  • [Presentation] Skein realization of cluster algebras with coefficients from marked surfaces2021

    • Author(s)
      湯淺亘
    • Organizer
      Infinite Analysis 21 workshop Around Cluster Algebras
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Skein and cluster algebras of marked surfaces without punctures for sl_32021

    • Author(s)
      湯淺亘
    • Organizer
      東京大学 トポロジー火曜セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Filtered and graded $\mathfrak{sl}_{3}$-skein algebras of marked surfaces without punctures2021

    • Author(s)
      湯淺亘
    • Organizer
      Hurwitz action online フルビッツ作用とその周辺
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Skein and cluster algebras of marked surfaces without punctures for $\mathfrak{sl}_{3}$2021

    • Author(s)
      湯淺亘
    • Organizer
      Quantum Geometry and Representation Theory
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Zero stability for the one-row colored $\mathfrak{sl}_{3}$ Jones polynomial2020

    • Author(s)
      湯淺亘
    • Organizer
      東工大トポロジーセミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Zero stability for the one-row colored $\mathfrak{sl}_{3}$ Jones polynomial2020

    • Author(s)
      湯淺亘
    • Organizer
      Friday Seminar on Knot Theory
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] The tail of the one-row colored $\mathfrak{sl}_{3}$ Jones polynomial and the Andrews-Gordon type identity2020

    • Author(s)
      湯淺亘
    • Organizer
      表現論セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 色付きジョーンズ多項式の tail と $q$-級数2020

    • Author(s)
      湯淺亘
    • Organizer
      Friday Tea Time Zoom Seminar
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Twist formulas for one-row colored $A_2$ webs and $\mathfrak{sl}_{3}$ tails of $(2,2m)$-torus links2020

    • Author(s)
      湯淺亘
    • Organizer
      Intelligence of Low-dimensional Topology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A full twist formula for the A_2 skein colored with (m,n) and (k,0)2020

    • Author(s)
      湯淺亘
    • Organizer
      ひねる代数~Hurwitz actionとその周辺~
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] The sl(3) colored Jones polynomial of (2,m)-torus links and its tails2020

    • Author(s)
      湯淺亘
    • Organizer
      The 15th East Asian Conference on Geometric Topology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Categorification of two-variable Chebyshev polynomials via linear skein theory2019

    • Author(s)
      湯淺亘
    • Organizer
      結び目の数理II
    • Related Report
      2019 Research-status Report
  • [Remarks] webページ

    • URL

      https://wataruyuasa.github.io/math/

    • Related Report
      2023 Annual Research Report
  • [Remarks] 湯淺亘のホームページ

    • URL

      https://wataruyuasa.github.io/math/

    • Related Report
      2022 Research-status Report
  • [Remarks] Wataru YUASA

    • URL

      https://wataruyuasa.github.io/math/

    • Related Report
      2020 Research-status Report
  • [Remarks] Wataru YUASA

    • URL

      https://sites.google.com/view/wyuasa/home

    • Related Report
      2019 Research-status Report
  • [Remarks] 結び目の数理II, スライドと報告集原稿

    • URL

      http://www.math.chs.nihon-u.ac.jp/~ichihara/Knots2019/index.html#yuasa

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi