• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Finite element methods for nonlinear partial differential equations on curved domains

Research Project

Project/Area Number 19K14590
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionNagoya University

Principal Investigator

Kemmochi Tomoya  名古屋大学, 工学研究科, 助教 (80824664)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords有限要素法 / 偏微分方程式 / 数値解法 / 誤差評価 / 不連続Galerkin時間離散化法 / 楕円型偏微分方程式 / 放物型偏微分方程式 / Stokes方程式 / 数値解析 / 不連続Galerkin法 / 最大正則性 / 非線形偏微分方程式 / 構造保存数値解法 / 線形偏微分方程式 / 応用数学 / 楕円型方程式 / 放物型方程式
Outline of Research at the Start

さまざまな自然現象は, 偏微分方程式と呼ばれる方程式で記述される. 多くの場合, 偏微分方程式の解を2次方程式の解の公式のように陽的に表示することは困難であることが知られている. したがって, 現象の理解のためにはコンピュータによる数値シミュレーションが必須である. シミュレーションの手法や結果を数学的に解析する分野のことを数値解析学と呼ぶ. 本研究では, 代表的な数値計算手法である有限要素法に対する数値解析を行う.

Outline of Final Research Achievements

I investigated the finite element method for partial differential equations with smooth boundaries and related topics from various viewpoints. In particular, I obtained many important resultsfor elliptic and parabolic partial differential equations, such as the maximum norm estimates and the discontinuous Galerkin time-stepping method. In addition, I studied numerical methods for solving time-evolving curves and I applied them to mathematical analysis of a minimizing problem for curves.

Academic Significance and Societal Importance of the Research Achievements

有限要素法はその柔軟性や数学的な明快さから, シミュレーション分野で広く用いられている数値解法である. 有限要素法に対する数学的な解析は, シミュレーションの妥当性を数学的に保証するために重要な研究である. 本研究成果は特に, 現実問題のシミュレーションの問題設定として現れうる問題を考えているため, シミュレーション分野において重要な役割を果たしている.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (35 results)

All 2024 2023 2022 2021 2020 2019

All Journal Article (13 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 13 results,  Open Access: 1 results) Presentation (22 results) (of which Int'l Joint Research: 6 results,  Invited: 10 results)

  • [Journal Article] Migrating elastic flows2024

    • Author(s)
      Kemmochi Tomoya、Miura Tatsuya
    • Journal Title

      Journal de Mathematiques Pures et Appliquees

      Volume: 185 Pages: 47-62

    • DOI

      10.1016/j.matpur.2024.02.003

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Matrix equation representation of the convolution equation and its unique solvability2024

    • Author(s)
      Yuki Satake, Tomohiro Sogabe, Tomoya Kemmochi, Shao-Liang Zhang
    • Journal Title

      Special Matrices

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Discrete Maximal Regularity for the Discontinuous Galerkin Time-Stepping Method without Logarithmic Factor2024

    • Author(s)
      Takahito Kashiwabara, Tomoya Kemmochi
    • Journal Title

      SIAM Journal on Numerical Analysis

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Tensor product-type methods for solving Sylvester tensor equations2023

    • Author(s)
      Niu Jing、Sogabe Tomohiro、Du Lei、Kemmochi Tomoya、Zhang Shao-Liang
    • Journal Title

      Applied Mathematics and Computation

      Volume: 457 Pages: 128155-128155

    • DOI

      10.1016/j.amc.2023.128155

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Structure-Preserving Numerical Method for the Fourth-Order Geometric Evolution Equations for Planar Curves2023

    • Author(s)
      Miyazaki Eiji、Kemmochi Tomoya、null Tomohiro Sogabe、Zhang Shao-Liang
    • Journal Title

      Communications in Mathematical Research

      Volume: 39 Issue: 2 Pages: 296-330

    • DOI

      10.4208/cmr.2022-0040

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Scalar auxiliary variable approach for conservative/dissipative partial differential equations with unbounded energy functionals2022

    • Author(s)
      Kemmochi Tomoya、Sato Shun
    • Journal Title

      BIT Numerical Mathematics

      Volume: - Issue: 3 Pages: 903-930

    • DOI

      10.1007/s10543-021-00904-w

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Computing the matrix fractional power with the double exponential formula2021

    • Author(s)
      Tatsuoka Fuminori、Sogabe Tomohiro、Miyatake Yuto、Kemmochi Tomoya、Zhang Shao-Liang
    • Journal Title

      ETNA - Electronic Transactions on Numerical Analysis

      Volume: 54 Pages: 558-580

    • DOI

      10.1553/etna_vol54s558

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] On a transformation of the ?-congruence Sylvester equation for the least squares optimization2020

    • Author(s)
      Satake Yuki、Sogabe Tomohiro、Kemmochi Tomoya、Zhang Shao-Liang
    • Journal Title

      Optimization Methods and Software

      Volume: - Issue: 5 Pages: 1-8

    • DOI

      10.1080/10556788.2020.1734004

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains2020

    • Author(s)
      Kashiwabara Takahito、Kemmochi Tomoya
    • Journal Title

      Mathematics of Computation

      Volume: 89 Issue: 324 Pages: 1647-1679

    • DOI

      10.1090/mcom/3500

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain2020

    • Author(s)
      Kashiwabara Takahito、Kemmochi Tomoya
    • Journal Title

      Numerische Mathematik

      Volume: 144 Issue: 3 Pages: 553-584

    • DOI

      10.1007/s00211-019-01098-8

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Modified Strang splitting for semilinear parabolic problems2019

    • Author(s)
      K. Nakano, T. Kemmochi, Y. Miyatake, T. Sogabe, S.-L. Zhang
    • Journal Title

      JSIAM Letters

      Volume: 11 Issue: 0 Pages: 77-80

    • DOI

      10.14495/jsiaml.11.77

    • NAID

      130007771371

    • ISSN
      1883-0609, 1883-0617
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Numerical Analysis of the Allen-Cahn Equation with Coarse Meshes2019

    • Author(s)
      Tomoya Kemmochi
    • Journal Title

      J. Math. Res. Appl.

      Volume: 39 Pages: 709-717

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Relation between the T-congruence Sylvester equation and the generalized Sylvester equation2019

    • Author(s)
      Y. Satake, M. Oozawa, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang
    • Journal Title

      Applied Mathematics Letters

      Volume: 96 Pages: 7-13

    • DOI

      10.1016/j.aml.2019.04.007

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Structure-preserving numerical methods for constrained gradient flows of planar closed curves with explicit tangential velocities2023

    • Author(s)
      T. Kemmochi, Y. Miyatake, and K. Sakakibara
    • Organizer
      ICIAM 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Stokes作用素の有限要素近似に対する離散最大正則性2023

    • Author(s)
      剱持智哉
    • Organizer
      日本応用数理学会 第19回 研究部会連合発表会
    • Related Report
      2022 Research-status Report
  • [Presentation] Stokes作用素の有限要素近似に対する$L^p$リゾルベント評価2022

    • Author(s)
      剱持智哉
    • Organizer
      名古屋微分方程式セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Stokes作用素の有限要素近似に対する$L^p$リゾルベント評価2022

    • Author(s)
      剱持智哉
    • Organizer
      日本応用数理学会2022年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] 偏微分方程式に対する有限要素法の$L^p$理論2022

    • Author(s)
      剱持智哉
    • Organizer
      第3回若手研究交流会
    • Related Report
      2022 Research-status Report
  • [Presentation] Stokes作用素の有限要素近似に対する$L^p$リゾルベント評価2022

    • Author(s)
      剱持智哉
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] Stokes作用素の有限要素近似に対する$L^p$リゾルベント評価2022

    • Author(s)
      剱持智哉
    • Organizer
      RIMS共同研究 (公開型) 「数値解析が拓く次世代情報社会~エッジから富岳まで~」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Higher-order discrete gradient methods by discontinuous Galerkin time-stepping methods2022

    • Author(s)
      Tomoya Kemmochi
    • Organizer
      JSPS seminar: Topics in computational methods for stochastic and deterministic differential equations
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] $L^p$-resolvent estimate for finite element approximation of the Stokes operator2022

    • Author(s)
      Tomoya Kemmochi
    • Organizer
      基礎論壇
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stokes作用素の有限要素近似に対する離散最大正則性2022

    • Author(s)
      剱持智哉
    • Organizer
      2022年度応用数学合同研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] Cahn-Hilliard方程式に対して構造保存解法とアダプティブ有限要素法を両立させたい2021

    • Author(s)
      剱持智哉
    • Organizer
      第2回若手研究交流会
    • Related Report
      2021 Research-status Report
  • [Presentation] 不連続Galerkin時間離散化手法による離散勾配法の高精度化2021

    • Author(s)
      剱持智哉
    • Organizer
      応用数理学会2021年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] 不連続Galerkin時間離散化手法による離散勾配法の高精度化2021

    • Author(s)
      剱持智哉
    • Organizer
      第83回 京大応用数学セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 平面曲線の制約条件付き勾配流に対する構造保存数値解法2020

    • Author(s)
      剱持智哉
    • Organizer
      数値解析セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Structure-preserving numerical methods for constrained gradient flows of planar curves2020

    • Author(s)
      Tomoya Kemmochi
    • Organizer
      ZOOM online colloquium at Department of Applied Mathematics, The Hong Kong Polytechnic University
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 重調和方程式に対するC0内部ペナルティ法の解析2019

    • Author(s)
      剱持智哉
    • Organizer
      若手応用数学研究会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Scalar auxiliary variable approach の紹介とその拡張2019

    • Author(s)
      剱持智哉
    • Organizer
      RIMS共同研究 (公開型) 諸科学分野を結ぶ基礎学問としての数値解析学
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Hamilton 系に対する SAV 法2019

    • Author(s)
      剱持智哉
    • Organizer
      日本数学会2019年度秋期総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] Hamilton 系に対する SAV 法2019

    • Author(s)
      剱持智哉
    • Organizer
      日本応用数理学会2019年度年会
    • Related Report
      2019 Research-status Report
  • [Presentation] Structure-preserving numerical scheme for the area-preserving curve shortening flow2019

    • Author(s)
      Tomoya Kemmochi
    • Organizer
      The 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Maximum norm error estimates for linear finite element semi-discretization of parabolic problems on smooth domains2019

    • Author(s)
      Tomoya Kemmochi and Takahito Kashiwabara
    • Organizer
      Conference on Mathematical
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hamilton 系に対する SAV 法2019

    • Author(s)
      剱持智哉
    • Organizer
      第48回数値解析シンポジウム (NAS2019)
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi