• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Local asymptotic mixed normality for discretely observed diffusion processes

Research Project

Project/Area Number 19K14604
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionThe University of Tokyo

Principal Investigator

Teppei Ogihara  東京大学, 大学院情報理工学系研究科, 准教授 (40746426)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Discontinued (Fiscal Year 2021)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords数理統計学 / 計量ファイナンス / 漸近理論 / 拡散過程 / 局所漸近混合正規性 / 積分観測モデル
Outline of Research at the Start

本研究では拡散過程の二つの統計モデル:「多次元拡散過程の積分値観測モデル」と「多次元拡散過程の非同期・ノイズ付観測モデル」に対して、統計的推定の最適性を議論する上で重要な性質である「局所漸近混合正規性」を証明し、最適な推定方法について研究する。前者は分子運動の方程式であるLangevin方程式へ適用されて分子運動データから分子特性を解析する上で重要なモデルであり、後者は株価の高頻度データのモデルとなっており応用上重要となる。

Outline of Final Research Achievements

For a continuously varying random time series model called a diffusion process, we studied statistical methods for estimating parameters when observing not the diffusion process itself but its integral value. Among the parameter estimation methods, we obtained the theoretical minimum variance of the estimation error when the number of data is sufficiently large, and constructed an estimator that actually achieves that minimum value (i.e., the estimator with the lowest estimation error). We also developed a theory of the estimator with the minimum variance estimator for the case where the diffusion process moves only in a specific direction, rather than randomly in all directions, which has been difficult to achieve in the past.

Academic Significance and Societal Importance of the Research Achievements

拡散過程の積分値を観測するモデルは、分子運動の方程式であるLangevin方程式へ適用されて分子運動データから分子特性を解析する上で重要なモデルである。また、金融市場における株価変動の大きさを分析する際にも用いられる。このようなモデルに対して、データが与えられた時により効率的に推定する手法を提案し、その理論的な性質の保証を与えたため、データ解析手法の発展に寄与するものであると考える。

Report

(3 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Research-status Report
  • Research Products

    (14 results)

All 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (9 results) (of which Int'l Joint Research: 6 results)

  • [Int'l Joint Research] Ulm University(ドイツ)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Universite d'Evry(フランス)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Ulm University(ドイツ)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Universite d'Evry(フランス)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Asymptotic error distributions of the Euler method for continuous-time nonlinear filtering2020

    • Author(s)
      T. Ogihara and H. Tanaka
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 37 Issue: 2 Pages: 383-413

    • DOI

      10.1007/s13160-020-00411-5

    • NAID

      210000163615

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Presentation] 退化した拡散過程に対する局所漸近混合正規性2021

    • Author(s)
      荻原 哲平
    • Organizer
      確率過程の統計推測の最近の展開2021
    • Related Report
      2020 Annual Research Report
  • [Presentation] Malliavin Calculus techniques for local asymptotic mixed normality and their application to degenerate diffusions2020

    • Author(s)
      Teppei Ogihara
    • Organizer
      Bernoulli-IMS One World Symposium 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Local asymptotic mixed normality for degenerate diffusion processes2020

    • Author(s)
      Teppei Ogihara
    • Organizer
      CMStatistics 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 退化した拡散過程に対する局所漸近混合正規性2020

    • Author(s)
      荻原 哲平
    • Organizer
      2020年度 統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Parameter estimation for misspecified diffusion with market microstructure noise2019

    • Author(s)
      Teppei Ogihara
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Parameter estimation for misspecified diffusion with market microstructure noise2019

    • Author(s)
      Teppei Ogihara
    • Organizer
      The European Meeting of Statisticians 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Parameter estimation for misspecified diffusion processes with noisy, nonsynchronous observations2019

    • Author(s)
      Teppei Ogihara
    • Organizer
      62nd ISI World Statistics Congress
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Local asymptotic mixed normality for multi-dimensional integrated diffusion processes2019

    • Author(s)
      Masaaki Fukasawa and Teppei Ogihara
    • Organizer
      Risk and Statistics - 2nd ISM-UUlm Joint Workshop
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 拡散過程の積分観測モデルの局所漸近混合正規性2019

    • Author(s)
      深澤正彰,荻原哲平
    • Organizer
      2019年度 統計関連学会連合大会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi