Construction of guiding principles of materials design for tough rubbers
Project/Area Number |
19K14839
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Kubo Atsushi 東京大学, 生産技術研究所, 助教 (40760335)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | ゴム / 破壊力学 / き裂進展 / 有限要素法 |
Outline of Research at the Start |
本研究の目的は、ゴム材料中のき裂進展「速度転移」現象(荷重の増大に伴い、き裂の進展が不連続的に加速される現象)の発生条件を明らかにし、ゴム材料の強靭化・長寿命化のための材料設計指針を与えることである. (1)数値シミュレーションを実施することで、速度転移現象への影響因子となる材料物性を特定する. (2)材料物性から速度転移挙動を予測する理論モデルを構築することで,ゴム材料のき裂進展を抑制するための材料設計指針を提案する.
|
Outline of Final Research Achievements |
We conducted a series of finite element method (FEM) analyses and mathematical-model analyses for the purpose of revealing the mechanism of the “velocity transition” phenomenon in crack propagation (an abrupt acceleration of crack propagation beyond a critical external load) in rubber-like materials. The FEM simulation of crack propagation were performed to obtain the relationship between the known material parameters (e.g., elasticity, viscosity) and the transition energy (i.e., the critical tearing energy to induce the velocity transition). A series of FEM simulations with systematically varied material parameters revealed the determining factors for the transition energy. A mathematical model was constructed on the basis of the FEM results, where the transition energy was estimated as a function of the mechanical state at the crack tip.
|
Academic Significance and Societal Importance of the Research Achievements |
き裂進展速度転移現象はゴム材料の寿命と非常に密接に関連しており,速度転移を引き起こす「転移エネルギー」が大きいほどき裂が進展しにくく,疲労や摩耗に強いということが知られている.つまり転移エネルギーの大きいゴム材料を開発すれば,製品の強靭化・長寿命化が実現できる.本研究では,弾性や粘性といった既知の力学パラメータと転移エネルギーの関係を明らかにした.本研究の成果により,転移エネルギーを向上する(つまり,ゴム材料を強靭化する)ための材料設計指針が得られ,材料開発における大幅なコスト削減および製品の長寿命化による環境負荷の低減などの効果が期待される.
|
Report
(3 results)
Research Products
(1 results)