Project/Area Number |
19K14881
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 19010:Fluid engineering-related
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 数値流体力学 / 超臨界流体 / 炭化水素流れ / 非平衡凝縮 / 連続水熱合成反応 / 炭化水素流動 / 多成分 / 化学反応 |
Outline of Research at the Start |
本研究では次世代発電サイクルにおける回転機械内部の熱流動,化学反応プロセスにおける反応器内部流動,化学反応を伴う熱交換器内部流動などの臨界点近傍の複数流体が混在した流動問題の解決を目的とし,実在気体効果を考慮した混合流体モデルの提案,Look-up Table化による計算時間の削減,産業利用における超臨界条件下の混合流体の熱流動について明らかにすることを目指す.特に理想気体,単一流体の流動とは大きく異なる多成分超臨界流体の熱流動を明らかにすることで,超臨界流体の工業利用における流動の諸問題の解決に大きく寄与することができると期待される.
|
Outline of Final Research Achievements |
Supercritical fluids have been widely used as reasonable and safe solvents and coolants in many industrial fields. The supercritical-fluid flow is different from that under normal pressure conditions due to rapid changes in density and isobaric specific heat near the pseudo-critical temperature. Furthermore, the multicomponent effects of thermophysical properties may affect the thermal flow at supercritical conditions. We conducted supercritical hydrocarbon flow simulations with pyrolysis and considered the multicomponent effects of the changes in thermophysical properties. We developed a double flux model for preconditioned fundamental equations. The mixing flow of supercritical water in continuous hydrothermal synthesis and the nonequilibrium condensation in a radial compressor were simulated.
|
Academic Significance and Societal Importance of the Research Achievements |
超臨界水は酸化金属ナノ粒子生成の溶媒として用いられ,超臨界二酸化炭素はブレイトンサイクルやアラムサイクルの作動流体,急速膨張法のナノ粒子生成の溶媒として用いるなど超臨界流体は微粒子生成や抽出,薄膜生成,発電システムなどの様々な工業的な利用が提案されており,エネルギー効率や環境面の優位性からさらなる利用の拡大が期待されている.一方で高圧条件であることから実験による詳細な流動の解明は難しく,超臨界流体の流動は十分に明らかになっていなかった.本研究によって多成分の超臨界流体流動や液滴が混ざった高圧気体流動について流動解析が達成されたことで,今後の超臨界流体の利用拡大に貢献した.
|