• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Designing Thermal Functional Materials via Materials Informatics

Research Project

Project/Area Number 19K14902
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 19020:Thermal engineering-related
Research InstitutionThe University of Tokyo

Principal Investigator

JU SHENGHONG  東京大学, 大学院工学系研究科(工学部), 客員研究員 (30809645)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywordsマテリアルズ・インフォマティクス / 伝熱機能材料 / ベイズ最適化 / 機械学習 / モンテカルロ木探索
Outline of Research at the Start

This project aims to realize high-efficiency designing of materials with ultimate high/low thermal conductivity by combining traditional thermal simulation with novel informatics algorithm. Two directions will be conducted: (1) High throughput screening of high/low thermal conductivity crystals via hierarchical screening and transfer learning. (2) Nanostructure designing via Bayesian optimization and Monte Carlo tree search. The design methodology developed in this project is expected to improve the developing efficiency of thermal materials greatly and help to explore new physics behind.

Outline of Final Research Achievements

Designing functionalized materials with desired thermal property holds its critical importance in applications of heat exchanger, thermal interface materials, thermoelectrics, thermal barrier coating and insulators. In this project, materials informatics methods including high-throughput screening and Bayesian optimization have been developed to design thermal functional materials. The key of designing thermal functional materials via materials informatics is to build communications between materials’simulations/experiments and machine learning tools. By setting the objective function, descriptor selection, property calculator to evaluate the objective function, and an informatics optimization method, we have successfully explored the high thermal conductivity crystals, highly selective radiative cooling materials, thermoelectric films and magnetic tunnel junctions. Those results have shown great advantage of materials informatics to design thermal functional materials.

Academic Significance and Societal Importance of the Research Achievements

The target of this research is to develop high efficiency and novel materials informatics method for designing thermal functionalized materials. The developed method can be easily extended to other transport property designing, which is expected to contribute to both research and industry society.

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (23 results)

All 2022 2021 2020 2019

All Journal Article (10 results) (of which Int'l Joint Research: 10 results,  Peer Reviewed: 10 results,  Open Access: 3 results) Presentation (11 results) (of which Int'l Joint Research: 7 results,  Invited: 9 results) Book (1 results) Funded Workshop (1 results)

  • [Journal Article] Descriptors of intrinsic hydrodynamic thermal transport: screening a phonon database in a machine learning approach2022

    • Author(s)
      Torres Pol、Wu Stephen、Ju Shenghong、Liu Chang、Tadano Terumasa、Yoshida Ryo、Shiomi Junichiro
    • Journal Title

      Journal of Physics: Condensed Matter

      Volume: 34 Issue: 13 Pages: 135702-135702

    • DOI

      10.1088/1361-648x/ac49c9

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning2021

    • Author(s)
      Ju Shenghong、Yoshida Ryo、Liu Chang、Wu Stephen、Hongo Kenta、Tadano Terumasa、Shiomi Junichiro
    • Journal Title

      Physical Review Materials

      Volume: 5 Issue: 5 Pages: 053801-053801

    • DOI

      10.1103/physrevmaterials.5.053801

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Phonon transport in multiphase nanostructured silicon fabricated by high-pressure torsion2021

    • Author(s)
      Shao Cheng、Matsuda Kensuke、Ju Shenghong、Ikoma Yoshifumi、Kohno Masamichi、Shiomi Junichiro
    • Journal Title

      Journal of Applied Physics

      Volume: 129 Issue: 8 Pages: 085101-085101

    • DOI

      10.1063/5.0037775

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Identifying Optimal Strain in Bismuth Telluride Thermoelectric Film by Combinatorial Gradient Thermal Annealing and Machine Learning2020

    • Author(s)
      Sasaki Michiko、Ju Shenghong、Xu Yibin、Shiomi Junichiro、Goto Masahiro
    • Journal Title

      ACS Combinatorial Science

      Volume: 22 Issue: 12 Pages: 782-790

    • DOI

      10.1021/acscombsci.0c00112

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Designing thermal functional materials by coupling thermal transport calculations and machine learning2020

    • Author(s)
      Ju Shenghong、Shimizu Shuntaro、Shiomi Junichiro
    • Journal Title

      Journal of Applied Physics

      Volume: 128 Issue: 16 Pages: 161102-161102

    • DOI

      10.1063/5.0017042

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Machine learning analysis of tunnel magnetoresistance of magnetic tunnel junctions with disordered MgAl2O42020

    • Author(s)
      Ju Shenghong、Miura Yoshio、Yamamoto Kaoru、Masuda Keisuke、Uchida Ken-ichi、Shiomi Junichiro
    • Journal Title

      Physical Review Research

      Volume: 2 Issue: 2 Pages: 023187-023187

    • DOI

      10.1103/physrevresearch.2.023187

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Design of a highly selective radiative cooling structure accelerated by materials informatics2020

    • Author(s)
      Guo Jiang、Ju Shenghong、Shiomi Junichiro
    • Journal Title

      Optics Letters

      Volume: 45 Issue: 2 Pages: 343-343

    • DOI

      10.1364/ol.45.000343

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Predicting Materials Properties with Little Data Using Shotgun Transfer Learning2019

    • Author(s)
      Yamada Hironao、Liu Chang、Wu Stephen、Koyama Yukinori、Ju Shenghong、Shiomi Junichiro、Morikawa Junko、Yoshida Ryo
    • Journal Title

      ACS Central Science

      Volume: 5 Issue: 10 Pages: 1717-1730

    • DOI

      10.1021/acscentsci.9b00804

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Anomalously low thermal conductivity in superhard cubic Si3N42019

    • Author(s)
      Liu Jing、Ju Shenghong、Nishiyama Norimasa、Junichiro Shiomi
    • Journal Title

      Physical Review B

      Volume: 100 Issue: 6 Pages: 064303-064303

    • DOI

      10.1103/physrevb.100.064303

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] High bond difference parameter-induced low thermal transmission in carbon allotropes with sp2 and sp3 hybridization2019

    • Author(s)
      Feng Zhihao、Dong Huicong、Ju Shenghong、Wen Bin、Zhang Yuwen、Melnik Roderick
    • Journal Title

      Physical Chemistry Chemical Physics

      Volume: 21 Issue: 23 Pages: 12611-12619

    • DOI

      10.1039/c9cp01029g

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] High Throughput Screening of Materials for Interfacial Thermal Transport2022

    • Author(s)
      Shenghong Ju
    • Organizer
      MRS Spring Meeting
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Designing Wavelength-Selective Thermal Radiative Materials via Machine Learning2022

    • Author(s)
      Shenghong Ju
    • Organizer
      The 3rd International Symposium on Multiscale Simulations of Thermophysics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Designing Wavelength-Selective Thermal Radiative Materials via Machine Learning2021

    • Author(s)
      Shenghong Ju
    • Organizer
      The 5th Forum of Materials Genome Engineering
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Exploring ultrahigh lattice thermal conductivity crystals via feature-based transfer learning2020

    • Author(s)
      Shenghong Ju, Ryo Yoshida, Chang Liu, Kenta Hongo, Terumasa Tadano, Junichiro Shiomi
    • Organizer
      MSE2020 - Virtual Materials Science and Engineering Congress
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Designing Nanostructures for Phonon Transport via Heuristic Algorithms2020

    • Author(s)
      Shenghong Ju
    • Organizer
      The 4th Phonon Engineering Workshop
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Machine learning analysis of tunnel magnetoresistance of magnetic tunnel junctions with disordered MgAl2O42020

    • Author(s)
      Shenghong Ju
    • Organizer
      The 4rd Forum of Materials Genome Engineering
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] High Thermoelectric Performance in Metastable Phases of Silicon: A Density Functional Theory Study2020

    • Author(s)
      Shenghong Ju
    • Organizer
      The 5th Workshop on Thermal Transport, China
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] マテリアルズ・インフォマティクスによる伝熱機能材料の設計2019

    • Author(s)
      鞠 生宏, 塩見 淳一郎
    • Organizer
      第66回応用物理学会春季学術講演会
    • Related Report
      2019 Research-status Report
  • [Presentation] Desing thermal functional materials via materials informatics2019

    • Author(s)
      Ju Shenghong
    • Organizer
      The 4th Workshop on Thermal Transport, Wuhan, China, 2019
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Desing thermal functional materials via materials informatics2019

    • Author(s)
      Ju Shenghong
    • Organizer
      The 3rd Forum of Materials Genome Engineering, Yunnan, China, 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Application of materials informatics on designing thermal functional materials2019

    • Author(s)
      Ju Shenghong、Shiomi Junichiro
    • Organizer
      The 6th Asian Materials Data Symposium, Shanghai, China, 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] Chapter: Application of Bayesian optimization to thermal science, in Book titled Nanoscale Energy Transport: Emerging phenomena, methods and applications2020

    • Author(s)
      Jiang Guo, Shenghong Ju and Junichiro Shiomi
    • Total Pages
      488
    • Publisher
      IOP Publishing Ltd
    • ISBN
      9780750317368
    • Related Report
      2019 Research-status Report
  • [Funded Workshop] The 6th Asian Materials Data Symposium2019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi