Project/Area Number |
19K14908
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | 蒸発 / 微細構造 / 分子動力学 / 固気液界面 / 相変化 / 界面 |
Outline of Research at the Start |
蒸発は幅広く工業機器において見られる物理現象であり,伝熱制御や促進は機器の高効率化に直結する. 本研究において,濡れ性の異なるnmスケールの狭隘構造を有する伝熱面上の蒸発現象を対象とする.分子シミュレーションと実証実験を組み合わせて行うことにより,伝熱面のどの構造特性が,どの程度,気液相変化現象に影響を及ぼしているのかを明らかとし,高熱輸送化を可能とする方法を創出することを目的としている.
|
Outline of Final Research Achievements |
In the present study, the classical molecular dynamics simulations and experimental evaluations were performed to comprehensively understand the evaporation on the periodic nanostructured surfaces. In the molecular dynamics study, the nanoslit systems were employed. It clarified how and how much the surface characteristics and wettability influenced the evaporation amount and the molecules trajectory during the evaporation. In the experimental study, the periodic rectangular nanopillars of approximately 100 nm were fabricated on the heat transfer surface by means of electron beam lithography. With the nanopillars, the evaporation was enhanced because the droplet was physical pinned to the solid surface, and the decrease in the length in the solid-gas-liquid contact line was mitigated.
|
Academic Significance and Societal Importance of the Research Achievements |
蒸発はヒートパイプやヒートポンプといった幅広く工業機器において重要な物理現象であり,その促進や制御には大きなニーズが存在する.近年の微細加工技術の進展によりナノスケールの表面構造を作製することが実現しているが,ナノ構造が蒸発をどのように,どの程度変化させることが可能であるのか,集成した物理的理解が得られているとは言い難い.分子動力学解析と実験実証の双方からナノスケール表面周期構造が蒸発に与える影響について包括的な理解を獲得した.
|