Project/Area Number |
19K14918
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Soumei Baba 国立研究開発法人産業技術総合研究所, エネルギー・環境領域, 主任研究員 (10711773)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 微細加工 / 伝熱促進 / 凝縮 / 液滴ジャンプ / 熱交換 / 濡れ性制御 / ポーラス材料 / 多孔体 / ナノ材料 |
Outline of Research at the Start |
本研究では、合金化・脱合金化によって形成されるナノメートルからマイクロメートルスケールの共連続型ポーラスの自己組織化3次元構造に着目し、高性能伝熱面に応用することで、超撥水面形成や超撥水面と超親水面のパターニングによる濡れ性勾配を設け、凝縮液滴生成密度や液滴自発跳躍現象、動的な液滴供給・排除を制御することで、伝熱面姿勢によらない凝縮熱伝達特性の飛躍的な向上を試みる。
|
Outline of Final Research Achievements |
In this study, we focused on the co-continuous porous formed by alloying and dealloying, and produced a functional heat transfer surface with a wettability gradient due to permeability due to capillarity and hydrophobic / hydrophilic patterning. By using dry etching technology together, we have produced a hierarchical nano/micro structure that combines nano-scale structures and microstructures. We have tried to dynamically control the nucleation density, spontaneous droplet jumping, and droplet exclusion by changing the dimensions of the nano/micro structure. By providing a nano/microscale hierarchical structures on the heat transfer surface of the condensation, the diameter of the spontaneous jumping droplets was reduced to about 20-30 um, and a guideline for improving the heat transfer of the condensation was obtained by significantly improving the frequency of jumping.
|
Academic Significance and Societal Importance of the Research Achievements |
凝縮挙動を核生成から液滴排出までマルチスケールに制御を行うために、微細形状をパラメータとして試作検討を行い、マイクロスコープを用いた観察実験を実施した。実験結果に基づき、超撥水面における滴状凝縮挙動を制御するパラメータを見出し、凝縮熱伝達を促進させるための知見を獲得した。さらに、非定常な液滴挙動による伝熱促進の可能性を示唆する実験結果を得た。凝縮熱伝達は熱利用技術の高度化のために非常に有用であり、特に今後市場拡大が見込まれる電子機器の冷却デバイスにおいて活用が見込まれる。
|